共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《化学工业与工程技术》2020,(2):18-25
基于小型流化床评价装置研究了内蒙古褐煤煤焦与水蒸气的流化气化反应特性,考察了温度、压力、水蒸气分压和氢气分压对碳转化率、反应速率和平均气体组分的影响。研究结果表明,随着反应温度升高,碳转化率和反应速率显著增加,由于高温对气化反应深度和变换反应平衡的影响,平均有效气组分大幅增加。提高系统压力会抑制流化气化反应的进行,碳转化率和反应速率降低,加压有利于CH_4生成,但对平均有效气组分的影响不明显。随着水蒸气分压的增加,碳转化率和反应速率大幅增加,但其促进了变换反应的平衡移动导致平均有效气组分降低。氢气的存在会与水分子竞争煤焦表面的活性位,抑制气化反应的进行,使得碳转化率和反应速率降低。采用Langmuir-Hinshelwood(L-H)模型拟合得到了H_2抑制作用下的煤焦水蒸气流化气化反应速率方程,试验值与模型拟合值吻合较好,并且计算得出宏观反应活化能为181.36 kJ/mol。 相似文献
3.
利用微型流化床反应分析仪考察了1123~1223 K及10%~40%蒸汽分压(SP)条件下生物质半焦-水蒸气气化的反应特性并计算动力学。结果表明:升高温度和SP有利于缩短反应时间,提高产物(H2、CO和CO2)生成率及总C转化率。低温(1123 K)下,反应受SP影响较大,以H2最为明显,增幅达1.97倍;在1223 K、SP≥20%条件下,因受活性位点制约,SP对反应影响较小。随温度升高,CO/CO2体积产率比呈现出先减小后增大趋势;在1123 K和1173 K下,随SP升高,CO/CO2的体积产率比值降低;在1223 K下,该值维持在1.25左右。采用缩核模型求取不同SP下总碳转化活化能(Ea)在71.29~76.78 kJ/mol范围内,H2、CO2和CO的生成活化能分别在95.44~101.82、83.56~89.35和70.41~74.86 kJ/mol之间。测试结果弥补了现有分析仪难以测定气化过程中气体产物生成特性和动力学的局限性。 相似文献
4.
5.
《化学工程》2017,(9):62-67
利用固定床装置对来自蒙古国的巴嘎诺尔煤(BN)、纳赖呼煤(NL)、阿拉格陶盖煤(AT)和塔本陶勒盖煤(TT)进行程序升温水蒸气气化实验,考察了4种煤样气化合成气主要组分H_2,CO和CO_2的生成规律,着重研究了煤样气化反应动力学和合成气各组分生成动力学特性,并对2种动力学特性进行分析。研究发现,BN,NL和AT3种煤样气化合成气中H_2和CO_2主要在较低温区(900—1 050 K)生成,CO则在较高温区(>1 000 K)生成,而TT煤气化反应H_2,CO和CO_2均需要在较高温区(>1 000 K)生成。AT和TT煤水蒸气气化反应动力学所选取的模型与其气化合成气各组分生成动力学所选取的模型一致,分别为均相模型和缩核模型。BN和NL煤气化生成H_2,CO_2的生成动力学适宜采用均相模型,而CO的生成动力学适宜采用缩核模型,但这2种煤样的水蒸气气化反应动力学均可采用均相模型。 相似文献
6.
设计了生物质气化工艺流程,探究生物质气化的最佳工艺条件。以贵州核桃壳、玉米秸秆、稻壳为原料,N2为保护气,水蒸气为气化剂,探究气化时间、水蒸气流量、反应物质量和气化温度对气化率的影响,得出玉米秸秆、核桃壳、稻壳的最佳质量分别为5 g、4 g、2 g;最佳气化温度分别为700℃、650℃、600℃;最佳反应时间分别为240 s、420 s、240 s;最佳水蒸气流量分别为132.8 mL/h、177.15 mL/h、88.5 mL/h。玉米秸秆、核桃壳、稻壳都是气化时间越长,气化率越高。核桃壳、玉米秸秆、稻壳的CO含量最高分别为28.82%、39%、16.8%;核桃壳、稻壳、玉米秸秆的H2含量最高分别为42.71%、30.8%、7.81%,核桃壳中含有大量的CO和H2。 相似文献
7.
煤焦与水蒸气及二氧化碳的气化反应动力学 总被引:7,自引:0,他引:7
本文应用恒速升温热重法对6种中国煤焦与二氧化碳和水蒸气的气化反应进行研究。采用下面二个动力学方程来求算气化反应动力学参数。计算机处理实验数据结果表明n=1的相关系数及计算值与实验结果的一致性都比n≠1的好。 K_2CO_3用作催化剂能明显加速义马长焰煤焦与二氧化碳和水蒸气气化反应速率,可预测K_2CO_3对其他5种中国煤焦亦有较明显的催化气化能力。 相似文献
8.
9.
10.
为了阐明压力对煤焦水蒸气气化反应的影响规律,在加压固定床微分反应器上研究了三种不同煤阶的中国煤焦水蒸气加压(达到2.0 MPa)气化反应动力学。详细讨论了n级速率方程应用于不同压力范围的情况,提出了一个简单实用的经验速率方程,并得出了压力对煤焦水蒸气气化反应动力学参数的影响规律。结果表明,只包含水蒸气分压项的传统的n级速率方程不适合总压变化的情况。新提出的简单实用的加压煤焦气化速率方程引入水蒸气摩尔分数、总压和温度三个变量,能较好地反映总压对煤焦气化速率的影响规律。即水蒸气摩尔分数对气化速率的影响明显大于总压对气化速率的影响。对于HLH煤焦,水蒸气摩尔分数的指数随总压增大几乎不变,而对于SM煤焦和JC煤焦,水蒸气摩尔分数的指数随总压增大有增大的趋势。 相似文献
11.
《化工学报》2017,(3)
采用自制蒸气气化炉试验系统,以废弃松木屑为原料制作成型颗粒燃料,采用高温水蒸气气化,考察不同气化温度及气料比(S/B)对生物质水蒸气气化反应的影响,利用XRD射线衍射和傅里叶红外图谱分别分析生物质反应残留物及气化焦油,反应残留物的比表面积及空隙特性由BET多点法和BJH法测得。结果表明,蒸汽流量和反应温度有利于促进蒸汽重整、碳还原、CO的变换反应,当S/B由0.5增加到1.5时,温度为900℃,H2体积分数由52.32%增长到67.3%;随温度升高(750~950℃,S/B=1),松木颗粒的失重率由82.91%升高到91.27%,其微孔结构充分发展,平均孔直径由20.96 nm降低到3.76 nm,焦油中脂肪烃含量增加,芳香烃因发生开环反应使其含量降低,有益于降低气化气中焦油含量。 相似文献
12.
采用自制蒸气气化炉试验系统,以废弃松木屑为原料制作成型颗粒燃料,采用高温水蒸气气化,考察不同气化温度及气料比(S/B)对生物质水蒸气气化反应的影响,利用XRD射线衍射和傅里叶红外图谱分别分析生物质反应残留物及气化焦油,反应残留物的比表面积及空隙特性由BET多点法和BJH法测得。结果表明,蒸汽流量和反应温度有利于促进蒸汽重整、碳还原、CO的变换反应,当S/B由0.5增加到1.5时,温度为900℃,H2体积分数由52.32%增长到67.3%;随温度升高(750~950℃,S/B=1),松木颗粒的失重率由82.91%升高到91.27%,其微孔结构充分发展,平均孔直径由20.96 nm降低到3.76 nm,焦油中脂肪烃含量增加,芳香烃因发生开环反应使其含量降低,有益于降低气化气中焦油含量。 相似文献
13.
以K2CO3为催化剂,利用自行设计的加压固定床反应器进行了神木煤焦-水蒸气催化气化反应动力学研究,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响.系统压力为3.5 MPa,气化反应温度分别为600℃,650℃和700℃,其中600℃下水蒸气分压分别为1.24 MPa,1.83 MPa和2.88 MPa;650℃和700℃下的水蒸气分压分别为1.24 MPa,1.83 MPa和2.34 MPa.研究发现,随气化温度的提高和水蒸气分压的增加,煤焦的水蒸气气化反应活性明显提高.采用n级速率方程得到煤焦与水蒸气的反应级数为0.732,活化能为102.63 kJ/mol;采用L-H方程得到活化能为109.23 kJ/mol,其速率方程可以更精确地描述反应气体压力对气化反应的影响. 相似文献
14.
《应用化工》2016,(6)
以内蒙褐煤焦为研究对象,K_2CO_3为催化剂,在小型加压固定床上考察了反应温度、操作压力和水碳比对煤焦水蒸气气化反应过程中碳转化率、反应速率和甲烷浓度及其累计流量的影响。结果表明,随着反应温度的增加,碳转化率和反应速率显著增加,甲烷浓度及其累计流量也增加,表明甲烷化反应在600~700℃内仍受动力学控制。操作压力的提高,碳转化率和反应速率呈先增加后减小的变化趋势,而甲烷的浓度逐渐增加,其累计流量由常压下的2.4 mL逐渐增加至3.5 MPa下的43.2 mL。随着水碳比的增加,碳转化率和反应速率大幅增加,但是甲烷的浓度逐渐降低,甲烷的累计流量受反应速率和反应平衡的共同影响,呈先增加后减小的趋势。 相似文献
15.
《应用化工》2022,(6)
以内蒙褐煤焦为研究对象,K_2CO_3为催化剂,在小型加压固定床上考察了反应温度、操作压力和水碳比对煤焦水蒸气气化反应过程中碳转化率、反应速率和甲烷浓度及其累计流量的影响。结果表明,随着反应温度的增加,碳转化率和反应速率显著增加,甲烷浓度及其累计流量也增加,表明甲烷化反应在600700℃内仍受动力学控制。操作压力的提高,碳转化率和反应速率呈先增加后减小的变化趋势,而甲烷的浓度逐渐增加,其累计流量由常压下的2.4 mL逐渐增加至3.5 MPa下的43.2 mL。随着水碳比的增加,碳转化率和反应速率大幅增加,但是甲烷的浓度逐渐降低,甲烷的累计流量受反应速率和反应平衡的共同影响,呈先增加后减小的趋势。 相似文献
16.
以稻草为生物质原料,水蒸气为介质,白云石为催化剂,在固定床气化炉中进行生物质水蒸气气化等反应,考察了白云石粒径(5~20mm)、白云石床高(550~1 000mm)和煅烧白云石等对生物质水蒸气气化特性的影响。结果表明,在气化炉中装入白云石,有助于生物质水蒸气气化、催化裂解、二氧化碳重整和水蒸气重整等反应进行。白云石粒径减小、白云石床高和煅烧白云石含量增加,有利于产气中氢体积分数的增加。当白云石粒径为5~10mm、白云石床高为1 000mm和煅烧白云石为100%时,产气中氢体积分数最大为53.18%,产氢率最大为0.92m3/kg,产气率最大为1.72m3/kg,气化效率最大为99.93%,水蒸气近似分解率最大为51.28%。 相似文献
17.
为解决我国高灰熔融性煤的利用难题,采用等温热重法,研究了典型贵州高灰熔融性煤焦在不同气化温度及不同水蒸气含量下的气化特性,并采用混合反应模型对试验数据进行处理,求取动力学参数。结果表明,在不同水蒸气含量下,随着气化反应温度的升高,典型贵州煤焦的反应性提高,气化反应速率的峰值增大,气化反应时间缩短;气化剂中水蒸气含量越多,煤焦反应性越好,气化反应速率的峰值越大,但当水蒸气含量大于30%后差别不明显;典型贵州煤焦与水蒸气反应的反应级数为0.912 9~1.620 9,活化能为149.34~165.12 k J/mol。 相似文献
18.
19.
20.
采用热重分析法对水蒸气气氛下牦牛粪热失重特性进行了研究,并运用Flynn-Wall-Ozawa法、主曲线法/Kissinger法和分布活化能模型(DAEM)连续耦合的方法对热解过程进行反应机理分析以及动力学参数计算。研究结果表明:牦牛粪水蒸气气化过程主要分为两个阶段,即热解阶段和气固反应阶段;水蒸气对前者有轻微的抑制作用,对后者有显著的促进作用。动力学分析表明,反应级数机理模型(热解阶段和气固反应阶段反应级数分别为2.40和1.17)对牦牛粪水蒸气气化动力学过程有较好适应性;热解阶段的半纤维素、纤维素和木质素热解对应的活化能分别为169.32、 185.76和219.52 kJ/mol;气固反应阶段的热解炭缩合反应和水蒸气气固反应对应的活化能分别为275.59和312.44 kJ/mol。 相似文献