首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gpdh genomic region has been cloned and sequenced in Drosophila pseudoobscura. A total of 6.8 kb of sequence was obtained, encompassing all eight exons of the gene. The exons have been aligned with the sequence from D. melanogaster, and the rates of synonymous and nonsynonymous substitution have been compared to those of other genes sequenced in these two species. Gpdh has the lowest rate of nonsynonymous substitution yet seen in genes sequenced in both D. pseudoobscura and D. melanogaster. No insertion/deletion events were observed, and the overall architecture of the gene (i.e., intron sites, etc.) is conserved. An interesting amino acid reversal was noted between the D. melanogaster Fast allele and the D. pseudoobscura gene.  相似文献   

2.
Three homozygous allelic forms (alpha GPDHf, alpha GPDHm and alpha GPDHs) of NAD+-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) of Drosophila virilis were purified to homogeneity and their biochemical properties were compared. Although these three forms were mutually distinguishable by electrophoresis, no significant differences were found with respect to pH optima for both forward and reverse reactions (pH 6.0--6.5 for dihydroxyacetone phosphate reduction; pH 10.0--10.5 for glycerol 3-phosphate oxidation), native and subunit molecular weights (65 000 for native form; 35 000--37 000 for subunit) and Michaelis constants for NADH, glycerol 3-phosphate and NAD+ (5.3--6.0 microM for NADH; 1.8--1.9 mM for glycerol 3-phosphate; 100--110 microM for NAD+). Significant differences among three forms were observed in thermostability at 35 degrees C and inhibition by excess of dihydroxyacetone phosphate. The alpha GPDHf form was found to be most thermolabile and the alpha GPDHs form most susceptible to the inhibition.  相似文献   

3.
A 36-kDa protein was isolated by affinity chromatography using Cymelarsan, an arsenical drug currently used in African trypanosomiasis treatment, as ligand. This protein was identified as glycerol-3-phosphate dehydrogenase. Trypanosomal glycerol-3-phosphate was bound covalently, whereas its counterpart from rabbit muscle bound by ionic interaction. Arsenical drugs inhibit the enzyme in a dose-dependent manner. Oxidation of cysteine residues protects against inactivation without significantly diminishing enzymic activity. Drug concentrations giving 50% inhibition of the dehydrogenase activity were determined for the enzyme from both Trypanosoma brucei and rabbit and indicate a higher sensitivity of the trypanosomal enzyme to arsenical drugs and thiol reagents. MS was used to identify residues of glycerol-3-phosphate dehydrogenase bound by Cymelarsan; they are not conserved in the mammalian enzyme.  相似文献   

4.
Circadian clocks function to govern a wide range of rhythmic activities in organisms. An integral part of rhythmicity is the daily control of target genes by the clock. Here we describe the sequence and analysis of a novel clock-controlled gene, ccg-7, showing similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme widely used as a constitutive control in a variety of systems. That ccg-7 encodes GAPDH was confirmed by demonstrating that in vitro synthesized CCG-7 possesses GAPDH activity. Rhythms in both ccg-7 mRNA accumulation and CCG-7 (GAPDH) activity are observed in a clock wild-type strain where the peak in GAPDH activity lags several hours behind the peak in ccg-7 mRNA accumulation in the late night. Together with our previous observation that ccg-7 mRNA is not developmentally regulated, we show that ccg-7 is not induced by environmental stresses such as glucose or nitrogen deprivation (which also trigger development), heat shock, or osmotic stress. Thus, the finding that GAPDH is clock-regulated points to a specific role for the circadian clock in controlling aspects of general metabolism and provides evidence for circadian regulation of a gene found in most living organisms.  相似文献   

5.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

6.
This article describes the development and psychometric evaluation of self-report measurement instruments in (nursing) research. The aim of this study is to gain more insight into, and understanding of the use of such instruments. To be more specific, this paper deals with: (1) What is a self-report measurement instrument?; (2) How to develop such an instrument?; (3) What is its psychometric quality in terms of validity and reliability?; (4) How to analyze an instrument statistically?; (5) Which are the pros en cons of a self-report measurement instrument in general?; and (6) Where do we find examples of good measurement instruments? These six questions will be answered with the help of several practical research examples. The article concludes with a few suggestions for literature concerning existing measurement instruments and their psychometric qualities.  相似文献   

7.
8.
GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosphorylating erythrose-4-phosphate dehydrogenase activity (Zhao, G., Pease, A. J., Bharani, N., and Winkler, M. E. (1995) J. Bacteriol. 177, 2804-2812) but a low phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity, whereas GAPDH shows a high efficient phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity and a low phosphorylating erythrose-4-phosphate dehydrogenase activity. To identify the structural factors responsible for these differences, comparative kinetic and binding studies have been carried out on both GapB-encoded protein of Escherichia coli and GAPDH of Bacillus stearothermophilus. The KD constant of GapB-encoded protein for NAD is 800-fold higher than that of GAPDH. The chemical mechanism of erythrose 4-phosphate oxidation by GapB-encoded protein is shown to proceed through a two-step mechanism involving covalent intermediates with Cys-149, with rates associated to the acylation and deacylation processes of 280 s-1 and 20 s-1, respectively. No isotopic solvent effect is observed suggesting that the rate-limiting step is not hydrolysis. The rate of oxidation of glyceraldehyde 3-phosphate is 0.12 s-1 and is hydride transfer limiting, at least 2000-fold less efficient compared with that of erythrose 4-phosphate. Thus, it can be concluded that it is only the structure of the substrates that prevails in forming a ternary complex enzyme-NAD-thiohemiacetal productive (or not) for hydride transfer in the acylation step. This conclusion is reinforced by the fact that the rate of oxidation for erythrose 4-phosphate by GAPDH is 0.1 s-1 and is limited by the acylation step, whereas glyceraldehyde 3-phosphate acylation is efficient and is not rate-determining (>/=800 s-1). Substituting Asn for His-176 on GapB-encoded protein, a residue postulated to facilitate hydride transfer as a base catalyst, decreases 40-fold the kcat of glyceraldehyde 3-phosphate oxidation. This suggests that the non-efficient positioning of the C-1 atom of glyceraldehyde 3-phosphate relative to the pyridinium of the cofactor within the ternary complex is responsible for the low catalytic efficiency. No phosphorylating activity on erythrose 4-phosphate with GapB-encoded protein is observed although the Pi site is operative as proven by the oxidative phosphorylation of glyceraldehyde 3-phosphate. Thus the binding of inorganic phosphate to the Pi site likely is not productive for attacking efficiently the thioacyl intermediate formed with erythrose 4-phosphate, whereas a water molecule is an efficient nucleophile for the hydrolysis of the thioacyl intermediate. Compared with glyceraldehyde-3-phosphate dehydrogenase activity, this corresponds to an activation of the deacylation step by >/=4.5 kcal.mol-1. Altogether these results suggest subtle structural differences between the active sites of GAPDH and GapB-encoded protein that could be revealed and/or modulated by the structure of the substrate bound. This also indicates that a protein engineering approach could be used to convert a phosphorylating aldehyde dehydrogenase into an efficient non-phosphorylating one and vice versa.  相似文献   

9.
To investigate the correlation between neural activity and intracellular Ca2+ ([Ca2+]i) mobilization in immature and adult brain during ischemia (hypoxia and glucose deprivation) and deprivation of glucose, hippocampal slices were prepared from 7-, 10-day-old and adult rats. Population spikes (PS) and antidromic responses (AR) were recorded in the pyramidal cell layer of the CA1 area as an index of neural function. [Ca2+]i mobilization of the stratum radiatum in the CA1 area was measured using the fluorescent dye fura-2 AM. The rise in [Ca2+]i occurred earlier in the adult animal and the decay times for the orthodromic PS and antidromic responses were shorter in the adult during ischemia. The field potentials and antidromic responses decreased substantially prior to the elevation of [Ca2+]i in both developing and adult brains. Furthermore, ATP levels decreased substantially before the elevation of [Ca2+]i during ischemia. These results suggest that neural activity and intracellular Ca2+ homeostasis in the immature rats brain are more resistant to energy failure than adult rats and that neuronal activity in the developing and adult brain is impaired initially by energy depletion during ischemia. In the immature animal, during glucose deprivation, the antidromic responses were slowly decayed or even failed to extinguish and [Ca2+]i levels were maintained for a longer period or even failed to rise in spite of the rapid loss of PS. Furthermore, ATP levels were well preserved at the time of PS loss. These results agree well with our previous reports showing that glucose plays an important role in the preservation of synaptic transmission in addition to its major function as an energy substrate.  相似文献   

10.
1. The amino acid compostion, N- and C-terminal amino acid sequences, and the subunit molecular weight of glyceraldehyde phosphate dehydrogenase from human muscle, were determined. The obtained results and the maps of tryptic peptides suggest that the enzyme is composed of four identical or very similar polypeptide chains. 2. From the tryptic digest of performic acid-oxidized enzyme, 32 peptides were isolated. The amino acid sequence analysis showed a high degree of homology with the corresponding tryptic peptides of the dehydrogenase from pig muscle, with 9 replacements and probably two additional amino acids in the examined sequences of the human muscle enzyme.  相似文献   

11.
OBJECTIVE: Myocardial reperfusion following brief period of ischaemic is associated with prolonged, reversible periods of metabolic dysfunction. As the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is inhibited in vitro by reactive oxygen species, we hypothesized that production of reactive oxygen species during reperfusion would lead to inhibition of GAPDH in post-ischaemic myocardium. METHODS: Anaesthetized closed-chest-dogs were subjected to 20 min balloon occlusion of the left anterior descending coronary artery. Biopsy samples were taken after 3 and 24 h of reperfusion, to determine the activity of GAPDH and the concentrations of glycolytic intermediates in post-ischaemic and remote, non-ischaemic territories. RESULTS: A significant reduction in GAPDH activity was observed in post-ischaemic relative to remote tissue after 3 h reperfusion (4.8 +/- 0.5 vs. 2.9 +/- 0.2 mumol/min/mg protein; P < 0.01). Western blotting revealed no reduction in the levels of GAPDH protein. Analysis of enzyme kinetics showed the loss of activity to be associated with decreased Vmax (5.9 +/- 0.5 vs. 3.2 +/- 0.2 mumol/min/mg protein; P < 0.01) with no significant change in the Km for glyceraldehyde-3-phosphate (GAP). Incubation of the inhibited enzyme under both mild and strong reducing conditions failed to reactivate the enzyme. The acute reduction in enzyme activity in post-ischaemic tissue was accompanied by regional differences in glycolytic intermediates, notably a twofold accumulation of GAP (P < 0.05), and a reduction in the glucose metabolic rate (GMR) determined by positron emission tomography and [18F]2-fluorodeoxyglucose. By 24 h reperfusion, no regional differences in GAPDH activity, reaction Vmax or Km, GAP concentrations or GMR were detectable. CONCLUSIONS: These results suggest that inhibition of GAPDH activity may represent an important point at which glycolysis is limited during reperfusion, and further, that the mechanisms of enzyme inhibition do not involve simple oxidation or S-thiolation of critical active site thiol groups.  相似文献   

12.
An amino acid as a cofactor for a catalytic polynucleotide   总被引:3,自引:0,他引:3  
Natural ribozymes require metal ion cofactors that aid both in structural folding and in chemical catalysis. In contrast, many protein enzymes produce dramatic rate enhancements using only the chemical groups that are supplied by their constituent amino acids. This fact is widely viewed as the most important feature that makes protein a superior polymer for the construction of biological catalysts. Herein we report the in vitro selection of a catalytic DNA that uses histidine as an active component for an RNA cleavage reaction. An optimized deoxyribozyme from this selection requires L-histidine or a closely related analog to catalyze RNA phosphoester cleavage, producing a rate enhancement of approximately 1-million-fold over the rate of substrate cleavage in the absence of enzyme. Kinetic analysis indicates that a DNA-histidine complex may perform a reaction that is analogous to the first step of the proposed catalytic mechanism of RNase A, in which the imidazole group of histidine serves as a general base catalyst. Similarly, ribozymes of the "RNA world" may have used amino acids and other small organic cofactors to expand their otherwise limited catalytic potential.  相似文献   

13.
Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. These effects of RA are thought to be mediated by the nuclear retinoid receptors. Mannose-6-phosphate (M6P)/insulin-like growth factor-II (IGF-II) receptor is a multifunctional membrane glycoprotein that is known to bind both M6P and IGF-II and function primarily in the binding and trafficking of lysosomal enzymes, the activation of transforming growth factor-beta, and the degradation of IGF-II. M6P/IGF-II receptor has recently been implicated in fetal development and carcinogenesis. Despite the functional similarities between RA and the M6P/IGF-II receptor, no direct biochemical link has been established. Here, we show that the M6P/IGF-II receptor also binds RA with high affinity at a site that is distinct from those for M6P and IGF-II, as identified by a photoaffinity labeling technique. We also show that the binding of RA to the M6P/IGF-II receptor enhances the primary functions of this receptor. The biological consequence of the interaction appears to be the suppression of cell proliferation and/or induction of apoptosis. These findings suggest that the M6P/IGF-II receptor mediates a RA response pathway that is important in cell growth regulation. This discovery of the interaction of RA with the M6P/IGF-II receptor may have important implications for our understanding of the roles of RA and the M6P/IGF-II receptor in development, carcinogenesis, and lysosomal enzyme-related diseases.  相似文献   

14.
15.
Under typical culture conditions, cerebellar granule cells die abruptly after 17 days in vitro. This burst of neuronal death involves ultrastructural changes and internucleosomal DNA fragmentations characteristic of apoptosis and is effectively arrested by pretreatment with actinomycin-D and cycloheximide. The level of a 38-kDa protein in the particulate fraction is markedly increased during age-induced cell death and by pretreatment with NMDA, which potentiates this cell death. Conversely, the age-induced increment of the 38-kDa particulate protein is suppressed by actinomycin-D and cycloheximide. N-terminal microsequencing of the 38-kDa protein revealed sequence identity with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A GAPDH antisense oligodeoxyribonucleotide blocks age-induced expression of the particulate 38-kDa protein and effectively inhibits neuronal apoptosis. In contrast, the corresponding sense oligonucleotide of GAPDH was completely ineffective in preventing the age-induced neuronal death and the 38-kDa protein overexpression. Moreover, the age-induced expression of the 38-kDa protein is preceded by a pronounced increase in the GAPDH mRNA level, which is abolished by actinomycin-D, cycloheximide, or the GAPDH antisense, but not sense, oligonucleotide. Thus, our results suggest that overexpression of GAPDH in the particulate fraction has a direct role in age-induced apoptosis of cerebellar neurons.  相似文献   

16.
After screening 3,300 dogs, one animal with a mild deficiency of erythrocyte G6PD was detected. Although it had several clinical problems for 2 months, no abnormality could be directly attributable to the reduced enzymatic activity. Biochemically the mutant was electrophoretically slower but within the normal range for Km-G6P, Km-NADP, use of 2-dG6P and deamino NADP, pH optimum, and heat stability.  相似文献   

17.
Fas is an apoptosis-signaling receptor important for homeostasis of the immune system. In this study, Fas-mediated apoptosis and Fas mutations were analyzed in three Japanese children from two families with a lymphoproliferative disorder characterized by lymphadenopathy, hepatosplenomegaly, pancytopenia, hypergammaglobulinemia and an increase in TCR alphabeta+ CD4- CD8- T cells. Apoptosis induced by anti-Fas mAb was defective in both activated T cells and B cells, and granulocytes from these patients. Truncated Fas receptor lacking the cytoplasmic death domain caused by a point mutation in the splice region of intron 7 were demonstrated in two siblings. A homozygous point mutation in the splice acceptor of intron 3 was found in the Fas gene of the third patient, which resulted in the skipping of exon 4 and complete loss of Fas expression. Corresponding to these mutations, soluble Fas concentrations were decreased and reciprocally soluble Fas ligands were increased in patients' sera. Interestingly, co-stimulation by immobilized anti-Fas mAb in T cells from the two siblings was comparable to that seen in normal T cells. These results suggest that Fas-mediated apoptosis plays a pivotal role in immunological homeostasis in vivo, especially regarding clonal deletion of immune cells in humans.  相似文献   

18.
Incubation of glyceraldehyde-3-phosphate dehydrogenase with vinyl sulfones resulted in a pseudo first-order loss of enzyme activity. The selective inactivation of the enzyme by vinyl sulfones is suggested from the structural requirement analysis and the enzyme susceptibility test. The enzyme inactivation was strongly reduced in the presence of NAD or glyceraldehyde-3-phosphate, and the prior treatment of the enzyme with 5,5'-dithio-bis-(2-nitrobenzoic acid) prevented the enzyme from the inactivation by vinyl sulfones (> or = 90%). Moreover, the early rapid phase of inactivation was much more responsive to L-cysteine reactivation, compared with the slower phase. Based on these results, it is proposed that vinyl sulfones inactivate the enzyme by inducing the oxidation of cysteine residue and/or covalent binding to cysteine residue in active site.  相似文献   

19.
Huntington disease (HD) fibroblasts subjected to stress exhibit an enzyme profile that is different from that exhibited by escapee (unaffected members of families with HD) or control fibroblasts. The specific activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in normally cultured HD fibroblasts was not different from that in control and escapee fibroblasts. However, in escapee and control fibroblasts subjected to stress by withholding fresh medium, the specific activity of GAPDH in cells harvested by trypsinization increased greatly 3 weeks after withholding medium ( approximately 8-fold), but the increase was significantly less pronounced ( approximately 3-fold) in the HD fibroblasts. In contrast, only small changes occurred in the specific activity of lipoamide dehydrogenase (LADH) over the same time period, and the values were not significantly different among the three groups at any time point. The specific activity of hexokinase (HK) was significantly higher in the HD fibroblasts at 1-3 weeks after withholding fresh medium than in the escapee/control fibroblasts. Finally, the total yield of fibroblasts per culture flask (as judged by protein content) was significantly greater for the stressed HD fibroblasts than for the escapee and control fibroblasts at 2 and 3 weeks after withholding medium. The present results are in accord with the hypothesis that HD is a disease associated with latent, generalized metabolic abnormalities.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase binds to homologous and heterologous single-stranded but not double-stranded DNA. Binding to RNA, poly(A) and poly(dA-dT) has also been observed. Enzyme binding to these nucleic acids leads to the formation of an insoluble complex which can be sedimented at low speed. The interaction of glyceraldehyde-3-phosphate dehydrogenase with DNA is strongly inhibited by NAD and NADH but not by NADP. Adenine nucleotides, which inhibit the dehydrogenase activity by competing with NAD for its binding site (Yang, S.T. and Deal, W.C., Jr. (1969) Biochemistry 8, 2806--2813), also inhibit enzyme binding to DNA, whereas glyceraldehyde-3-phosphate and inorganic phosphate are non-inhibitory. These results suggest that DNA interacts through the NAD binding sites of glyceraldehyde-3-phosphate dehydrogenase. In accordance with this idea, it was found that DNA also binds to lactate dehydrogenase, an enzyme containing a similar dinucleotide binding domain, and that this binding is inhibited by NADH. A study of the base specificity of the DNA-glyceraldehyde-3-phosphate dehydrogenase interaction using dinucleoside monophosphates shows that inhibition of DNA binding by the dinucleotides requires the presence of a 3'-terminal adenosine and is greater when the 5'-terminus contains a pyrimidine instead of a purine. These results suggest that the dinucleotides bind at the NAD site of the dehydrogenase and that the enzyme would interact preferentially with PypA dinucleotides present in the nucleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号