首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Polycomb group of genes in Drosophila are homeotic switch gene regulators that maintain homeotic gene repression through a possible chromatin regulatory mechanism. The Enhancer of Polycomb (E(Pc)) gene of Drosophila is an unusual member of the Polycomb group. Most PcG genes have homeotic phenotypes and are required for repression of homeotic loci, but mutations in E(Pc) exhibit no homeotic transformations and have only a very weak effect on expression of Abd-B. However, mutations in E(Pc) are strong enhancers of mutations in many Polycomb group genes and are also strong suppressors of position-effect variegation, suggesting that E(Pc) may have a wider role in chromatin formation or gene regulation than other Polycomb group genes. E(Pc) was cloned by transposon tagging, and encodes a novel 2023 amino acid protein with regions enriched in glutamine, alanine and asparagine. E(Pc) is expressed ubiquitously in Drosophila embryogenesis. E(Pc) is a chromatin protein, binding to polytene chromosomes at about 100 sites, including the Antennapedia but not the Bithorax complex, 29% of which are shared with Polycomb-binding sites. Surprisingly, E(Pc) was not detected in the heterochromatic chromocenter. This result suggests that E(Pc) has a functional rather than structural role in heterochromatin formation and argues against the heterochromatin model for PcG function. Using homology cloning techniques, we identified a mouse homologue of E(Pc), termed Epc1, a yeast protein that we name EPL1, and as well as additional ESTs from Caenorhabditis elegans, mice and humans. Epc1 shares a long, highly conserved domain in its amino terminus with E(Pc) that is also conserved in yeast, C. elegans and humans. The occurrence of E(Pc) across such divergent species is unusual for both PcG proteins and for suppressors of position-effect variegation, and suggests that E(Pc) has an important role in the regulation of chromatin structure in eukaryotes.  相似文献   

2.
Polycomb group genes are necessary for maintaining homeotic genes repressed in appropriate parts of the body plan. Some of these genes, e.g. Psc, Su(z)2 and E(z), are also modifiers of the zeste-white interaction. The products of Psc and Su(z)2 were immunohistochemically detected at 80-90 sites on polytene chromosomes. The chromosomal binding sites of these two proteins were compared with those of zeste protein and two other Polycomb group proteins, Polycomb and polyhomeotic. The five proteins co-localize at a large number of sites, suggesting that they frequently act together on target genes. In larvae carrying a temperature sensitive mutation in another Polycomb group gene, E(z), the Su(z)2 and Psc products become dissociated from chromatin at non-permissive temperatures from most but not all sites, while the binding of the zeste protein is unaffected. The polytene chromosomes in these mutant larvae acquire a decondensed appearance, frequently losing characteristic constrictions. These results suggest that the binding of at least some Polycomb group proteins requires interactions with other members of the group and, although zeste can bind independently, its repressive effect on white involves the presence of at least some of the Polycomb group proteins.  相似文献   

3.
BACKGROUND: Counteraction between activators and repressors is crucial for the regulation of a number of cell-specific enhancers, where an activator and a repressor are mutually competitive in binding to the same site. DeltaEF1 is a repressor protein of delta1-crystallin minimal enhancer DC5 binding at the CACCT site, and inhibits activator deltaEF3 from binding to the overlapped site. It has two zinc finger clusters N-fin and C-fin, close to N- and C-termini, respectively, and a homeodomain in the middle. deltaEF1 also binds to the E2-box sequence CACCTG, and represses E2-box-dependent enhancers. RESULTS: The mechanism of the repressor action of deltaEF1 was investigated by examining various deletion mutants of deltaEF1 for their activity to repress delta1-crystallin enhancer fragment HN which contained DC5 sequence and an additional activator site. Both zinc finger clusters were found to be essential for DNA binding and repression, but the homeodomain was not. In addition, the NR domain close to the N-terminus was required for full repression. The NR domain showed active repression when fused to the Gal4 DNA binding domain. Active repression by deltaEF1, dependent on the NR domain, was also demonstrated in a situation where the binding sites of deltaEF1 and deltaEF3 were separated. N-fin and C-fin in their isolated forms bind the 5'-(T/C)ACCTG-3' and 5'-(t/C)ACCT-3' sequences, respectively, while the homeodomain showed no DNA binding activity. An analysis of DNA binding of the delta(Int)F form, having both N-fin and C-fin, indicated that a single DNA binding domain is assembled from two zinc finger clusters. CONCLUSION: Two mechanisms are involved in the repressor action of deltaEF1. First, a binding site competition with an activator which depends on the integrity of both zinc finger clusters, and second, an active repression to silence an enhancer which is attributed to the NR domain.  相似文献   

4.
5.
6.
Hypersensitive site 3 (HS3) of the beta-like globin locus control region has been implicated as an important regulator of the beta-like globin genes, but the trans factors that bind HS3 have only been partially characterized. Using a five-species alignment (human, galago, rabbit, goat, and mouse) that represents 370 million years of evolution, we have identified 24 phylogenetic footprints in the HS3 core and surrounding regions. Probes corresponding to the human sequence at each footprint have been used in binding studies to identify the nuclear factors that bind within and near these conserved sequence elements. Among the high-affinity interactions observed were several binding sites for proteins with repressor activity, including YY1, CCAAT displacement protein, and G1/G2 complexes (uncharacterized putative repressors) and several binding sites for the stage selector protein. To complement this analysis, orthologous galago sequences were also used to derive probes and the pattern of proteins binding to human and galago probes was compared. Binding interactions differing between these two species could be responsible for the different expression patterns shown by the two gamma genes (galago gamma is embryonic; human gamma is fetal). Alternatively, binding interactions that are conserved in the two species may be important in the regulation of common expression patterns (eg, repression of gamma in adult life).  相似文献   

7.
8.
The Drosophila Polycomb group (PcG) of genes is required for the epigenetic regulation of a number of important developmental genes, including the homeotic (Hox) genes. The members of this gene family encode proteins that do not share sequence similarity, implying that each plays a unique role in this epigenetic repression mechanism. Polycomblike (Pcl) was the second PcG gene to be identified. We report here the isolation and characterization of a human cDNA, termed PHF1, which encodes a protein with significant sequence similarity to Drosophila Polycomblike (PCL). The region of similarity between PHF1 and PCL includes the two PHD fingers (C4-H-C3 motif), the region between them, and sequences C-terminal to the PHD fingers. PHF1 and PCL are 34% identical over this 258-residue region. PHF1 was mapped to 6p21.3 by fluorescence in situ hybridization. While several genetic diseases that are likely to result from developmental abnormalities map to this region, PHF1 is not a clear candidate gene for any of them.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Four Caenorhabditis elegans genes, mes-2, mes-3, mes-4 and mes-6, are essential for normal proliferation and viability of the germline. Mutations in these genes cause a maternal-effect sterile (i.e. mes) or grandchildless phenotype. We report that the mes-6 gene is in an unusual operon, the second example of this type of operon in C. elegans, and encodes the nematode homolog of Extra sex combs, a WD-40 protein in the Polycomb group in Drosophila. mes-2 encodes another Polycomb group protein (see paper by Holdeman, R., Nehrt, S. and Strome, S. (1998). Development 125, 2457-2467). Consistent with the known role of Polycomb group proteins in regulating gene expression, MES-6 is a nuclear protein. It is enriched in the germline of larvae and adults and is present in all nuclei of early embryos. Molecular epistasis results predict that the MES proteins, like Polycomb group proteins in Drosophila, function as a complex to regulate gene expression. Database searches reveal that there are considerably fewer Polycomb group genes in C. elegans than in Drosophila or vertebrates, and our studies suggest that their primary function is in controlling gene expression in the germline and ensuring the survival and proliferation of that tissue.  相似文献   

18.
12 hypnotized, male undergraduates were given posthypnotic conflicts involving sexual or aggressive impulses toward an older, attractive woman. The 2 conflicts were implanted on separate occasions and were activated posthypnotically by the presentation of conflict words presented randomly at each of 3 levels of impulse intensity. 5 susceptible Ss (male undergraduates) were given instructions to simulate hypnosis. The hypnotic group produced significantly more symptoms and GSRs than the simulating group, and poor repressors produced significantly more symptoms and GSRs than good repressors with respect to the posthypnotic activation of anger and a destructive impulse. The 2 conflicts did not differ from each other on the dependent variables, and poor repressors and good repressors for both conflicts did not differ on measures of drive representation to TAT stories. A particular order of symptoms was generated as repression weakened, and the degree of repression conceptually resolved the discrepancy between 2 theories of psychosomatic symptoms. (32 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号