首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
X-ray absorption near edge structure (XANES), utilizing both electron yield and X-ray fluorescence detectors, and X-ray photoelectron spectroscopy (XPS) were used to follow chloride uptake by oxide-covered aluminum in 0.1 M NaCl solutions. The aluminum samples were polarized at selected potentials below (less positive than) the pitting potential. The electron yield XANES and XPS showed multiple peaks. The XPS chloride spectra showed two distinct sets of doublets. One doublet is related to chloride on the surface and the second is related to chloride incorporated in the oxide film. The XANES results also showed two peaks which are attributed to chloride on the surface and in the bulk of the oxide.  相似文献   

3.
X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron spectroscopy (PES) have been used to investigate single-walled carbon nanotubes (SWNTs) modified by immersion in a HBr solution at room temperature. After treatment XANES spectra of SWNTs show a new pronounced feature, which has been assigned to new bonds between the sidewall of the SWNTs and Br atoms. This investigation demonstrates the unique capabilities of the XANES spectroscopy as a tool to achieve structural and bonding information of carbon nanotubes induced by chemical processes.  相似文献   

4.
5.
J.T. Titantah  D. Lamoen 《Carbon》2005,43(6):1311-1316
We have performed X-ray photoelectron spectroscopy (XPS) and high energy electron energy-loss spectroscopy (HEELS) calculations from first principles on a series of Monte Carlo generated amorphous carbon materials and have used a technique which separates the π* and σ* components of the energy-loss near-edge structure spectra of carbon materials on the basis of the ab initio electronic structure calculations of graphite to determine the sp3 fraction of the carbon systems. While the XPS technique is found to probe the local coordination geometry, the sp3 fractions resulting from the HEELS technique are found to be in very good agreement with those based on the π-orbital axis vector analysis which accounts for the effects of non-planarity in 3-coordinated systems.  相似文献   

6.
C K-edge NEXAFS spectra could distinguish between the structures of coke on the catalysts used in fluid catalytic cracking, hydrotreatment and dry reforming of methane from the characteristic ;π* features. A particular advantage of NEXAFS spectroscopy was found in the characterization of highly aromatic coke that could not be analyzed by cross-polarization 13C-NMR due to the lack of magnetization transfer from 1H to 13C. The NEXAFS results elucidated two different structures of coke on Ni catalysts used in dry reforming of methane; one with a graphitic structure formed at lower temperatures and the other with a non-graphitic structure formed at higher temperatures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
8.
The goal of this paper is to illustrate how in situ X-ray absorption near edge structure (XANES) investigations can give a more detailed understanding of the function of various parameters on the mechanisms of passivity. In situ XANES has been used to monitor changes in oxidation state under electrochemical control that lead to a solid-state conversion or dissolution of metal or oxide. Recent studies on native and artificial passive films-mainly Fe, Cr and Fe-Cr alloys, are employed for this purpose.  相似文献   

9.
Effect of nitrogen-implantation on electron field emission properties of amorphous carbon films has been examined. Raman and X-ray photoelectron spectroscopy measurements reveal different types of C-N bonds formed upon nitrogen-implantation. The threshold field is lowered from 14 to 4 V/μm with increasing the dose of implantation from 0 to 5 × 1017 cm−2 and the corresponding effective work function is estimated to be in the range of 0.01-0.1 eV. From the perspective of tetrahedron bond formation, a mechanism for the nitrogen-lowered work function is proposed, suggesting that both the nitrogen nonbonding (lone pair) and the lone-pair-induced carbon antiboding (dipole) states are responsible for lowering the work function and hence the threshold field.  相似文献   

10.
The surface compositional and any structural changes that occur on carbon nanotubes using air-atmospheric pressure dielectric barrier discharge (APDBD) for functionalization are investigated employing Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and neutron diffraction techniques. Atmospheric pressure plasmas (APP) are suggested to be particularly suitable for functionalization of aligned nanotubes, where wet chemical manipulation could damage or even destroy the highly desirable vertical alignment. In this work a detailed experimental study elucidating the effects of APDBD plasma treatment parameters (e.g. power density, discharge composition, inter-electrode gap and treatment time) on the electronic structure, physical, and chemical behaviour of carbon nanotubes has been conducted. In an atmospheric air we find an optimal oxidative functionalization of CNTs in our DBD system within few seconds (<5 s) at a discharge power of ∼0.5 kW. This investigation may find useful application as functionalization technique for CNT engineered devices and sensors.  相似文献   

11.
Cementitious materials derived from coal combustion by-products have been investigated by means of X-ray diffraction (XRD) and S and Ca K-edge X-ray absorption fine structure (XAFS) spectroscopy. The XRD analysis revealed that these materials are a complex mixture of a small amount of quartz [SiO2] and three calcium-bearing compounds: hannebachite [CaSO3·1/2H2O], gypsum [CaSO4·2H2O] and ettringite [(Ca6(Al(OH)6)2(SO4)3·26H2O)]. Analysis of the S XAFS data focused on deconvolution of the X-ray absorption near-edge structure (XANES) regions of the spectra. This analysis established that sulfate and sulfite are the two major sulfur forms, with a minor thiophenic component contained in unburned carbon in the fly ash. Increasing sulfate and decreasing sulfite correlated well with increasing gypsum and ettringite and decreasing hannebachite content in the samples. Different calcium compounds were identified primarily through simple comparison of the Ca K-edge XANES and radial structure functions (RSFs) of the cementitious samples with those of reference compounds. Because of the complex coordination chemistry of calcium in these materials, it was difficult to obtain detailed local atomic environment information around calcium beyond the first CaO peak. Analysis of the extended X-ray absorption fine structure (EXAFS) and the RSF gave average CaO distances in the range 2.44-2.5 Å, with each calcium atom surrounded roughly by eight oxygen atoms. In certain samples, the average CaO distances were close to that in ettringite (2.51 Å), suggesting that these samples have higher ettringite content. The results of S and Ca K-edges XAFS and the XRD data were in reasonable agreement.  相似文献   

12.
Non-graphitic carbon materials produced by pyrolyzing wood at temperatures from 400 to 2400 °C and various types of commercial carbon fibers were examined by X-ray diffraction and Raman spectroscopy. The specimens cover a wide range of crystallite sizes La, in particular also very small sizes below 2 nm. The X-ray data were evaluated using the Scherrer equation and by an advanced approach using full curve fitting. The ratio of the D/G band intensities was determined from the Raman data by different evaluation techniques. A critical assessment of the classical linear relationship between 1/La and the D/G ratio shows that the relationship breaks down for crystallite sizes below 2 nm in accordance with recent theoretical predictions. The results are compared with data from the literature, showing that there are additional discrepancies between the data from various carbon types at large La due to different methods of data evaluation.  相似文献   

13.
A. Gohel  Y.W. Zhu  A.T.S. Wee 《Carbon》2005,43(12):2530-2535
We modify multi-wall carbon nanotubes (MWCNTs) by plasma treatment with N2 and Ar for varying durations and measure their field emission characteristics. The N2 treated MWCNTs showed significant improvement in field emission properties, while the Ar treated MWCNTs displayed poorer field emission characteristics compared to untreated MWCNTs. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy and work function measurements are used to investigate the field emission mechanisms after plasma treatments.  相似文献   

14.
J.X. Liao  W.M. Liu  T. Xu  Q.J. Xue 《Carbon》2004,42(2):387-393
A series of carbon films have been prepared by plasma-based ion implantation (PBII) with C on pure Al and Si. Emphasis has been placed on the effect of implanting voltage on the characteristics of these films. The structures of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The morphologies were observed by atomic force microscope (AFM). Surface hardness and electrical resistivity were also measured. The results indicate that the characteristics of these films are strongly dependent on the implanting voltage. An implanting voltage threshold value ranging from 3 to 5 kV starts to form a C-substrate transition layer owing to C+ ions implanted into the substrate. The transition layer exhibits a gradual change in composition and structure and effectively connects the carbon film and the substrate. Also, an implanting voltage threshold value ranging from 5 to 10 kV starts to form diamond-like carbon (DLC) films. An increasing voltage causes the resultant DLC films to be smoother and more compact. Moreover, Raman spectrum, chemical state of C1s, surface hardness and electrical resistivity all prove an optimum voltage of approximately 30 kV corresponding to the lowest ratio of sp2/sp3.  相似文献   

15.
Type I (high-modulus HM) and Type II (high-strength HT) carbon fibers electrochemically treated in a variety of electrolytes have been analyzed using X-ray photoelectron spectroscopy. A comparison of the differences in surface functionality and the possible interaction of treated fibers with epoxy resin is reported. The amount of carbon/oxygen functionality is greater for type II for the untreated and electrochemically treated fibers. Carboxylic/ester groups are produced at edge sites in the fiber surface whereas keto-enol groups are produced on the basal planes. Conclusive evidence for a chemical reaction between the fiber surface and 828-resin for fibers polarized in acidic electrolyte is given. It is not possible to conclude whether chemical bonding is responsible for the increased interlaminar shear strength of composites produced from treated fibers.  相似文献   

16.
D. Bolgiaghi  P. Mosaner  G. Radnoczi 《Carbon》2005,43(10):2122-2127
Carbon films have been synthesized at room temperature in helium atmosphere, at high pressure, on (1 0 0) Si substrates by pulsed KrF excimer laser ablation of highly oriented pyrolitic graphite. By changing laser power density (from 8.5 to 19 MW mm−2) and gas pressure (from 0.6 Pa to 2 kPa), nanometer sized cluster assembled films were obtained. Film morphology, as studied by scanning electron microscopy, changes with increasing helium pressure, from dense columns, to node-like morphology, then to an open dendritic structure. Carbon coordination was studied by visible Raman spectroscopy in all films. They are structurally disordered, sp2 coordinated and belong to the family of glass-like carbons. The deduced film coherence length agrees with the average size of carbon aggregates that build up the films, as measured by transmission electron microscopy in representative samples. The average number of carbon atoms per cluster, that depends on helium (high) pressure, was obtained by a simple model.  相似文献   

17.
The inhibition effect of high temperature boron-doping on the catalytic oxidation of carbon/carbon composites was investigated. Boron-doping at 2500 °C was found to improve the oxidation resistance of catalyst-loaded composites. Evident inhibition mechanisms include the reduction of active site number by increasing the crystallite size and the site blockage by formed boron oxide. Boron-doping at less than 1.0 wt.% was found to almost completely suppress the catalytic effect of calcium acetate after a slight carbon conversion. This inhibition effect was much less significant in the case of potassium-catalyzed oxidation where only a slight inhibition effect was observed. This is believed to be the essential result of the unique properties of potassium catalyst. Due to its wetting ability and mobility, potassium catalyst could form and maintain good interfacial contact with any exposed carbon surface regions.  相似文献   

18.
Aluminium oxide reduction was performed in a laboratory electrolysis cell with different industrial carbon cathode blocks (semi-graphitic, graphitic, and graphitized blocks). During electrolysis, sodium species migrate from the bath into the carbon cathode. Consequences of this migration include expansion of the blocks—the so-called sodium swelling—that may lead to failure of the cell. Characterisation of the blocks by XPS indicated that in addition to ionic sodium species (e.g. NaF and NaHCO3), two different types of metallic sodium were present in the cathodes. One type of metallic sodium is associated with a degradation of the graphitic structure, suggesting that this sodium is intercalated between the graphene layers, whereas the other type of metallic sodium was most probably present in micropores. Both types of metallic sodium were detected in semi-graphitic blocks while only the “micropore” sodium was found in graphitic and graphitized blocks. The metallic sodium was remarkably stable in the laboratory atmosphere, probably due to the fact that, after electrolysis, the entire porosity of the carbon cathode is filled with penetrated bath. This limits the access of oxygen and humidity to the metallic sodium.  相似文献   

19.
Carbon nitride films were deposited by filtered cathode vacuum arc combined with radio frequency nitrogen ion beam source. Both visible Raman spectroscopy and UV Raman spectroscopy are used to study the bonding type and the change of bonding structure in carbon nitride films with nitrogen ion energy. Both C–N bonds and CN bonds can be directly observed from the deconvolution results of visible and UV Raman spectra for carbon nitride films. Visible Raman spectroscopy is more sensitive to the disorder and clustering of sp2 carbon. The UV (244 nm) Raman spectra clearly reveal the presence of the sp3 C atoms in carbon nitride films. Nitrogen ion energy is an important factor that affects the structure of carbon nitride films. At low nitrogen ion energy (below 400 eV), the increase of nitrogen ion energy leads to the drastic increase of sp2/sp3 ratio, sp2 cluster size and C---N bonds fraction. At higher nitrogen ion energy, increase leads to the slight increase of CN bonds fraction and sp2 cluster size, slight decrease of C---N bonds fraction and sp2/sp3 ratio.  相似文献   

20.
Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号