首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Boron carbide (BC) is a boron-rich ceramic material used as a radiation absorber for shielding parts in the nuclear industry and for particle physics experimentation. BC parts are generally manufactured using the sintering process, which tends to limit the size and shape of components and imparts high cost. Low temperature and lower pressure moulding using a BC polymer matrix composites (PMC) provides an alternative process for developing lower cost parts whilst accommodating increased complexity of geometry and size. However, a lack of adhesion exhibited between BC and the resin led to a composite with limited mechanical strength and durability. In this study a silane coupling agent was used to improve the adhesion between the epoxy resin and BC. An improvement in mechanical strength was observed in the treated composite by means of three-point bending, Iosipescu and double v-notch tests. Initial investigation of the surface chemistry also showed the presence of hydroxyl groups and B–O bonds, which may promote improved adhesion through silane condensation and the formation of covalent bonds.  相似文献   

2.
The superlative mechanical properties of carbon nanotubes make them the filler material of choice for composite reinforcement. In this paper we review the progress to date in the field of mechanical reinforcement of polymers using nanotubes. Initially, the basics of fibre reinforced composites are introduced and the prerequisites for successful reinforcement discussed. The effectiveness of different processing methods is compared and the state of the art demonstrated. In addition we discuss the levels of reinforcement that have actually been achieved. While the focus will be on enhancement of Young’s modulus we will also discuss enhancement of strength and toughness. Finally we compare and tabulate these results. This leads to a discussion of the most promising processing methods for mechanical reinforcement and the outlook for the future.  相似文献   

3.
Young Seok Song 《Carbon》2005,43(7):1378-1385
Effects of different dispersion states of carbon nanotubes (CNTs) on rheological, mechanical, electrical, and thermal properties of the epoxy nanocomposites were studied. The dispersion states were altered depending upon whether a solvent was employed or not. To characterize dispersion of the CNTs, field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) were used. It was found that the nanocomposites containing poorly dispersed CNTs exhibited higher storage modulus, loss modulus, and complex viscosity than ones with well dispersed CNTs. It means that the poorly dispersed CNTs/epoxy composites have, from a rheological point of view, a more solid-like behavior. Tensile strength and elongation at break of the nanocomposites with different dispersion of CNTs were measured. Both of the well and the poorly dispersed CNTs composites showed a percolation threshold of electrical conductivity at less than 0.5 wt.% CNTs loading and the former had higher electrical and thermal conductivities than the latter. Effects of the CNTs content on the physical properties were also examined experimentally. As loading of the CNTs increased, improved results were obtained. From the morphological observation by FESEM and TEM, it was found that when the solvent was not used in the CNTs dispersion process, aggregates of pristine CNTs remained in the nanocomposites.  相似文献   

4.
In this study, the effects of carbon nanofiber (CNF) surface modification on mechanical properties of polyamide 1212 (PA1212)/CNFs composites were investigated. CNFs grafted with ethylenediamine (CNF‐g‐EDA), and CNFs grafted with polyethyleneimine (CNF‐g‐PEI) were prepared and characterized. The mechanical properties of the PA1212/CNFs composites were reinforced efficiently with addition of 0.3 wt % modified CNFs after drawing. The reinforcing effect of the drawn composites was investigated in terms of interfacial interaction, crystal orientation, crystallization properties and so on. After the surface modification of CNFs, the interfacial adhesion and dispersion of CNFs in PA1212 matrix were improved, especially for CNF‐g‐PEI. The improved interfacial adhesion and dispersion of CNFs in PA1212 matrix was beneficial to reinforcement of the composites. Compared with pure PA1212, improved degree of crystal orientation in the PA1212/CNF‐g‐PEI (CNF‐g‐EDA) composites was responsible for reinforcement of mechanical properties after drawing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41424.  相似文献   

5.
Abstract

The effect of carbon nanotube (CNT) integration in polymer matrixes (two-phase) and fibre reinforced composites (three-phase) was studied. Simulations for CNT/polymer composites (nanocomposites) and CNT/fibre/polymer composites (multiscale) were carried out by combining micromechanical theories applied to nanoscale and woven fibre micromechanic theories. The mechanical properties (Young’s modulus, Poisson’s ratio and shear modulus) of a multiscale composite were predicted. The relationships between the mechanical properties of nano- and multiscale composite systems for various CNT aspect ratios were studied. A comparison was made between a multiscale system with CNTs infused throughout and one with nanotubes excluded from the fabric tows. The mechanical properties of the composites improved with increased CNT loading. The influence of CNT aspect ratio on the mechanical properties was more pronounced in the nanocomposites than in the multiscale composites. Composites with CNTs in the fibre strands generated more desirable mechanical properties than those with no CNTs in the fibre strands.  相似文献   

6.
7.
8.
This paper is devoted to correlate the microstructure and room temperature mechanical properties of single-wall carbon nanotube (SWNT) reinforced 3 mol% yttria stabilized tetragonal zirconia with high SWNT content (2.5, 5 and 10 vol%). Fully dense composites were prepared by using a combination of aqueous colloidal powder processing and Spark Plasma Sintering. SWNTs were located at the ceramic grain boundaries and they were not damaged during the sintering process. The weak interfacial bonding between SWNTs and ceramic grains together with the detachment of SWNTs within thick bundles have been pointed out as responsible for the decrease of hardness and fracture toughness of the composites in comparison with the monolithic 3YTZP ceramic.  相似文献   

9.
Jiawen Xiong  Xiumin Qin  Huiqing Li 《Carbon》2006,44(13):2701-2707
A polyurethane/multi-walled carbon nanotube elastomer composite was synthesized. The microstructure of the composite was examined by field-emission scanning electron microscopy and transmission electron microscopy. The thermal and mechanical properties of the composite were characterized by dynamic mechanical thermal analysis, thermogravimetric analysis and tensile testing. The chemical linkage of carbon nanotubes with polyurethane matrix was confirmed by Fourier transform infrared spectra. The study on the structure of the composite showed that carbon nanotubes could be dispersed in the polymer matrix well apart from a few of clusters. The results from thermal analysis indicated that the glass transition temperature of the composite was increased by about 10 °C and its thermal stability was obviously improved, in comparison with pure polyurethane. The investigation on the mechanical properties showed that the modulus and tensile strength could be obviously increased by adding 2 wt% (by weight) CNT to the matrix.  相似文献   

10.
Soo-Jin Park  Ki-Sook Cho 《Carbon》2003,41(7):1437-1442
In this work, the influence of oxygen plasma treatment on the surface and adsorption properties of carbon blacks was investigated using X-ray photoelectron spectroscopy (XPS), ζ-potential, and BET isotherms. Then the mechanical properties [tensile strength and tearing energy (GIIIC)] of carbon black/acrylonitrile butadiene rubber (NBR) composites were measured. As a result, it was found that oxygen plasma treatment generated oxygen-containing functional groups, such as, carboxyl, hydroxyl, lactone, and carbonyl groups, on the carbon black surfaces, resulting in a decrease in the equilibrium spreading pressure or London dispersive component of surface free energy. The tearing energy of the carbon black/NBR composites improved as the oxygen-containing functional groups on the carbon black surfaces increased. This revealed that there is a relatively high degree of interaction between the polar NBR and the oxygen-functional groups of carbon blacks.  相似文献   

11.
Yangqiao Liu 《Carbon》2005,43(1):47-52
Novel carbon nanotube-NiFe2O4 composite materials have been prepared for the first time by in situ chemical precipitation of metal hydroxides in ethanol in the presence of carbon nanotubes (CNTs) and followed by hydrothermal processing. The obtained composite powders were characterized using XRD, TEM and EDS. The effect of surface oxidation treatment of CNTs on their properties was investigated by FTIR, zeta potential and hydrodynamic radius distribution characterization. Electrical conductivity measurements show that surface oxidation treatment of CNTs can improve the electrical conductivity of the composites more pronouncedly than pristine CNTs do. With 10 wt.% addition of surface treated CNTs, the electrical conductivity is increased by 5 orders of magnitude. The surface oxidized CNTs are crucial for this significant increase in electrical conductivity, which provides strong adhesion between the nanotubes and the matrix to give a homogeneous carbon nanotube-NiFe2O4 composite.  相似文献   

12.
In this work well uniform dispersion of single-walled carbon nanotubes (SWNTs) in isotactic polypropylene (iPP) was achieved by shear mixing. The results obtained from the differential scanning calorimetry curves indicate that the addition of low SWNT amounts (less than 1 wt%) led to an increase in the rate of polymer crystallization with no substantial changes in the crystalline structure, as confirmed by X-ray diffraction. The tensile mechanical properties showed that Young’s modulus and tensile strength considerably increase in the presence of nanotubes, with a maximum for 0.75 wt%. The reinforcing effect of SWNTs was also confirmed by dynamic mechanical analysis where, by adding nanotubes, a noticeable increase in the storage modulus was detected. The beneficial effects of SWNT incorporation was underlined comparing the results obtained with those of carbon black used as a filler.  相似文献   

13.
Epoxy/multiwall carbon nanotubes (MWCNTs) composites were investigated using three different non-ionic surfactants (BYK-110, Tween-80 and Nonidet-P40) separately as a modifier. The role of surfactants in dispersion of MWCNTs in the epoxy matrix was studied. Among three surfactants used, performance of Nonidet-P40 was found to be the best in improving the thermomechanical properties of the epoxy resin and achieving good dispersion of MWCNTs. The good dispersion of Nonidet-P40 modified MWCNT in the epoxy matrix is a result of the π–π interaction between π electrons of the Nonidet-P40 and π electron clouds of MWCNTs as well as H-bonding interaction between of Nonidet-P40 and the epoxy matrix. This type of interaction does not disturb the π electron clouds of MWCNTs as opposed to chemical functionalization strategy.  相似文献   

14.
A new method was developed to disperse carbon nanotubes (CNTs) in a matrix polymer and then to prepare composites by melt processing technique. Due to high surface energy and strong adsorptive states of nano-materials, single-walled carbon nanotubes (SWNTs) were adsorbed onto the surface of polymer powders by spraying SWNT aqueous suspected solution onto fine high density polyethylene (HDPE) powders. The dried SWNTs/powders were blended in a twin-screw mixture, and the resulting composites exhibited a uniformly dispersion of SWNTs in the matrix polymer. The electrical conductivity and the rheological behavior of these composites were investigated. At low frequencies, complex viscosities become almost independent of the frequency as nanotubes loading being more than 1.5 wt%, suggesting an onset of solid-like behavior and hence a rheological percolation threshold at the loading level. However, the electrical percolation threshold is ∼4 wt% of nanotube loading. This difference in the percolation thresholds is understood in terms of the smaller nanotube-nanotube distance required for electrical conductivity as compared to that required to impede polymer mobility. The measurements of mechanical properties indicate that this processing method can obviously improve the tensile strength and the modulus of the composites.  相似文献   

15.
Erik T. Thostenson 《Carbon》2006,44(14):3022-3029
The novel properties of carbon nanotubes have generated scientific and technical interest in the development of nanotube-reinforced polymer composites. In order to utilize nanotubes in multi-functional material systems it is crucial to develop processing techniques that are amenable to scale-up for high volume, high rate production. In this research we investigate a scalable calendering approach for achieving dispersion of CVD-grown multi-walled carbon nanotubes through intense shear mixing. Electron microscopy was utilized to study the micro and nanoscale structure evolution during the manufacturing process and optimize the processing conditions for producing highly-dispersed nanocomposites. After processing protocols were established, nanotube/epoxy composites were processed with varying reinforcement fractions and the fracture toughness and electrical/thermal transport properties were evaluated. The as-processed nanocomposites exhibited significantly enhanced fracture toughness at low nanotube concentrations. The high aspect ratios of the carbon nanotubes in the as-processed composites enabled the formation of a conductive percolating network at concentrations below 0.1% by weight. The thermal conductivity increased linearly with nanotube concentration to a maximum increase of 60% at 5 wt.% carbon nanotubes.  相似文献   

16.
Polymer and carbon composite materials reinforced with K-1100 ultra-high modulus fibers were subject to testing of their radiation resistance. Mechanical tests have been carried out, prior and after neutron irradiation at a dose of 7.1×1017 n/cm2 (E>0.5 MeV) for organic matrix composite and 7.3×1017 n/cm2 (E>0.5 MeV) for carbon matrix composite, to assess the radiation resistance. Flexural strength, deformation at break, Young’s modulus and dimensional changes were measured. Microstructure of the composites before and after irradiation was analyzed. The results showed that neutron irradiation causes significant changes in mechanical properties of composites with organic and carbon matrix and a slight variation in their dimensions. Stronger effects in mechanical properties changes for composites with carbon matrix were observed.  相似文献   

17.
The effects of needle-punched felt structure, including mass ratio of non-woven cloth to short-cut fiber web, PAN-based carbon fiber types of non-woven cloth and thickness of unit (one layer of non-woven cloth and short-cut web was named as a unit), on the flexural properties of C/C composites from pressure gradient CVI are discussed. Results show that flexural strength and modulus increase when mass ratio of non-woven cloth to short-cut fiber web changes from 7:3 to 6:4 and that PAN-based carbon fiber types of non-woven cloth strongly influence the flexural properties. The strength of C/C composites is not linear with the strength of non-woven cloth carbon fiber because of the important interface between carbon fiber and matrix carbon. It is suitable to choose T300 or T700 as reinforcing carbon fiber for C/C composites in the present study. An optimum unit number per cm of the needle-punched felts for higher flexural properties exists.  相似文献   

18.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

19.
J.L. Li  G.Z. Bai  J.W. Feng  W. Jiang 《Carbon》2005,43(13):2649-2653
Bulk carbon nanotube samples were prepared by spark plasma sintering. The as-prepared bulk carbon nanotube material exhibited brittle fracture similar to that of common ceramics. Its fracture toughness was around 4.2 MPa m1/2 while flexural strength was 50 MPa due to the weak bonding between carbon nanotubes. Obvious carbon nanotube bridging was found during the development of the crack induced by an indenter, which provides a possibility of carbon nanotube tough material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号