首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

2.
Multi-walled carbon nanotubes containing oxygenated groups (O-MWCNTs) have been functionalized with ammonia to improve the adsorption capacity and selectivity of CO2/CH4 in gas adsorption process. The effects of oxygen and nitrogen containing functional groups (e.g. hydroxyl and amine), on CO2 and CH4 adsorption were studied. The ideal adsorption capacities of MWCNTs were determined using volumetric method at ambient temperature and moderate pressures (from 0.1 to 3.0 MPa). The MWCNTs containing nitrogen groups (N-MWCNTs) showed much higher adsorption capacity of CO2 and selectivity of CO2/CH4 against the O-MWCNTs at different pressures. The highest selectivity was observed at lower pressures at 298 K for the N-MWCNTs. The dynamic adsorption experiments were carried out with a feed containing one to fivefold of CO2 to CH4 in a packed bed of N-MWCNTs at 298 K and atmospheric pressure. The breakthrough curves and breakthrough times of CO2 and CH4 were determined for the mixed gases. The results indicated high efficiency of the prepared N-MWCNTs in dynamic separation of CO2 and CH4.  相似文献   

3.
Dong Young Kim 《Carbon》2008,46(4):611-617
Single wall carbon nanotubes (SWCNTs) were treated with a HNO3/H2SO4 mixed solution to increase the number of narrow micropores. The mixed acid treatment increased the micropore volume from 0.13 to 0.35 mL g−1 as measured by N2 adsorption at 77 K. The micropore volume evaluated with CO2 adsorption at 273 K increased from 0.06 to 0.27 mL g−1. This remarkable micropore volume increase was ascribed to the formation of a highly packed and ordered SWCNT assembly with the acid treatment, which was confirmed by field emission scanning electron microscopy. The adsorption amount of supercritical H2 at 77 K under 5 MPa pressure increased twofold as a result of the acid treatment, while the supercritical CH4 adsorption amount at 303 K and 5 MPa pressure increased by 40%. These remarkable increases were caused by increased amount of narrow micropores as a result of the acid treatment.  相似文献   

4.
In order to increase the use of carpet wastes (pre- and/or post-consumer wastes), this work studies for the first time the preparation and characterisation of a microporous material from a commercial carpet (pile fiber content: 80% wool/20% nylon; primary and secondary backings: woven polypropylene; binder: polyethylene) and its application for CO2 capture. The porous material was prepared from an entire carpet material using a standard chemical activation with KOH and then, characterised in terms of their porous structure and surface functional groups. Adsorption of CO2 was studied using a thermogravimetric analyser at several temperatures (25-100 °C) and under different CO2 partial pressures (i.e. pure CO2 flow and a ternary mixture of 15% CO2, 5% O2 and 80% N2). In order to examine the adsorbent regenerability, multiple CO2 adsorption/desorption cycles were also carried out. The surface area and micropore volume of the porous adsorbent were found to be 1910.17 m2 g− 1 and 0.85 cm3 g− 1, respectively. The CO2 adsorption profiles illustrate that the maximum CO2 capture on the sample was reached in less than 10 min. CO2 adsorption capacities up to 8.41 wt.% and 3.37 wt.% were achieved at 25 and 70 °C, respectively. Thermal swing regeneration studies showed that the prepared adsorbent has good cyclic regeneration capacities.  相似文献   

5.
Micro-spherical particle of MnCO3 has been successfully synthesized in CTAB-C8H18-C4H9OH-H2O micro-emulsion system. Mn2O3 decomposed from the MnCO3 is mixed with Li2CO3 and sintered at 800 °C for 12 h, and the pure spinel LiMn2O4 in sub-micrometer size is obtained. The LiMn2O4 has initial discharge specific capacity of 124 mAh g−1 at discharge current of 120 mA g−1 between 3 and 4.2 V, and retains 118 mAh g−1 after 110 cycles. High-rate capability test shows that even at a current density of 16 C, capacity about 103 mAh g−1 is delivered, whose power is 57 times of that at 0.2 C. The capacity loss rate at 55 °C is 0.27% per cycle.  相似文献   

6.
Calcium-carbonate powders were coprecipitated with Al3+ and then decomposed in air and/or under a CO2 flux between 590 °C and 1150 °C. The data were analysed using a consecutive-decomposition-dilatometer method and the kinetic results were discussed according to the microstructure analysis done by N2 adsorption isotherms (78 K), SEM and FT-IR measurements. Below 1000 °C, CaCO3 particle thermal-decomposition was pseudomorphic, resulting in the formation of a CaO grain porous network. When the CaO grains were formed, the Al3+ diffused among them, producing AlO4 groups that promoted the CaO grain coarsening and reduced O2− surface sites available to CO2 adsorbed molecules to form CO32−. In pure CaO, CO32− diffused through the grain boundary, enhancing Ca2+ and O2− mobility; AlO4 groups reduced CO32− penetration and CaO sintering rate. Above 1000 °C, the sintering rate of the doped samples exceeded that of the undoped, likely because of Al3+ diffusion in CaO and viscous flow.  相似文献   

7.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

8.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

9.
Li1 + x[Mn0.45Co0.40Ni0.15]O2 spherical cathode materials with different sizes (about 2 and 5 μm) were fabricated by calcining uniform spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3 with lithium hydroxide at high temperature. The precursor of spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3, was obtained via co-precipitation method at room temperature, which was significantly dependent on synthetic conditions, such as the reaction temperature, the concentration of NH4HCO3, and stirring speed, etc. The optimized condition resulted in [Mn0.45Co0.40Ni0.15]CO3, of which the particle size distribution was uniform and the particle shape was spherical. The final products, Li1 + x[Mn0.45Co0.40Ni0.15]O2, had a well-ordered layered structure and uniform homogeneity. Raman spectroscopy analysis showed the Raman-active species Eg and A1g modes were observed at 488, 473 cm− 1 and 597, 590 cm− 1, respectively, for the obtained spherical cathode materials.  相似文献   

10.
A three-dimensional ordered macroporous (3DOM) cobalt ferrite (CoFe2O4) was prepared using polystyrene (PS) colloidal crystal template. The scanning electron microscopy (SEM) and the transmission electron microscopy (TEM) micrographs showed that the as-prepared CoFe2O4 material had a typical 3DOM structure, which was constructed with about 130 nm-sized macropores and 10-20 nm-sized walls. The obtained CoFe2O4 material had a specific surface area of 66.67 m2 g−1, and could deliver a relatively high capacity of 702 mAh g−1 (about double that of graphite) at a current density of 0.2 mA cm−2 after 30 cycles. Owing to the 3DOM nanoarchitecture, the as-prepared CoFe2O4 electrode exhibited a good rate performance. The results suggest a promising application of the 3DOM CoFe2O4 as anode material for lithium ion batteries.  相似文献   

11.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

12.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

13.
Synthesis, electrochemical, and structural properties of LiNi0.8Co0.15Al0.05O2 cathodes prepared by TiO2 nanoparticles coating on a Ni0.8Co0.15Al0.05(OH)2 precursor have been investigated by the variation of coating concentration and annealing temperature. TiO2-coated cathodes showed that Ti elements were distributed throughout the particles. Among the coated cathodes, the 0.6 wt% TiO2-coated cathode prepared by annealing at 750 °C for 20 h exhibited the highest reversible capacity of 176 mAh g−1 and capacity retention of 92% after 40 cycles at a rate of 1C (=190 mA g−1). On the other hand, an uncoated cathode showed a reversible first discharge capacity of 186 mAh g−1 and the same capacity retention value to the TiO2-coated sample at a 1C rate. However, under a 1C rate cycling at 60 °C for 30 cycles, the uncoated sample showed a reversible capacity of 40 mAh g−1, while a TiO2-coated one showed 71 mAh g−1. This significant improvement of the coated sample was due to the formation of a possible solid solution between TiO2 and LiNi0.8Co0.15Al0.05O2. This effect was more evident upon annealing the charged sample while increasing the annealing temperature, and at 400 °C, the coated one showed a more suppressed formation of the NiO phase from the spinel LiNi2O4 phase than the uncoated sample.  相似文献   

14.
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%.  相似文献   

15.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

16.
In this work, SiO2/Sb2O3 prepared by the sol-gel processing method, having a specific surface area, SBET, of 790 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt.% of Sb, was used as substrate base for immobilization of the 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine ion. Cobalt(II) ion was inserted into the porphyrin ring with a yield of complex bonded to the substrate surface of 59.4 μ mol g−1. A carbon paste electrode of this material was used to study, by linear sweeping voltammetric and chronoamperometric techniques, the electrocatalytic reduction of dissolved oxygen. The reduction, at the electrode solid-solution interface, occurred at −0.25 V versus SCE in 1.0 mol l−1 KCl solution, pH 5.5, by a four electron mechanism. The electrode response was invariant under various oxidation-reduction cycles showing that the system is chemically very stable. Such characteristics allowed the study of the electrode response towards various dissolved oxygen concentrations using the chronoamperometry technique. The cathodic peak current intensities plotted against O2 concentrations, between 1.0 and 12.8 mg l−1, showed a linear correlation. The electrode response time was very fast, i.e. about 1 s. This study was extended using the electrode to determine the concentration of dissolved oxygen in sea water samples.  相似文献   

17.
Pure and mixed gas n-C4H10 and CH4 sorption and dilation in poly(1-trimethylsilyl-1-propyne) (PTMSP) are reported at temperatures ranging from −20 to 35 °C. The presence of n-C4H10 in the mixture considerably reduces CH4 solubility. For example, CH4 solubility (in the limit of zero CH4 fugacity) at 25°C decreases from 4.0 (pure gas) to 0.78 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.60. At −20 °C, CH4 solubility decreases by almost an order of magnitude, from 10.2 (pure gas) to 1.22 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.61. In contrast, n-C4H10 mixture sorption properties are not measurably affected by the presence of CH4. The dual mode sorption model parameters for CH4 and n-C4H10 in PTMSP were determined from pure and mixed gas sorption measurements, and this model can adequately describe the sorption data. The n-C4H10/CH4 mixed gas solubility selectivity in PTMSP decreases as temperature increases and as n-C4H10 activity increases. For example, at 25 °C, the n-C4H10/CH4 solubility selectivity decreases from 250 to 120 as n-C4H10 activity increases from 0.02 to 0.25. At −20 °C and an n-C4H10 activity of 0.24, the n-C4H10/CH4 solubility selectivity is 590. Penetrant-induced volume dilation of PTMSP can be adequately modeled by assuming that all swelling is caused by penetrant molecules sorbed in the polymer's dense equilibrium region (i.e., the Henry's law region) during sorption. However, the best fit partial molar volumes in the Henry's law region for the dilation data are considerably lower than the penetrant partial molar volumes in liquids, suggesting that further theoretical efforts are needed to develop predictive models of volume dilation in high free volume glassy polymers.  相似文献   

18.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

19.
Adsorption equilibrium capacity of CO2, CH4, N2, H2 and O2 on periodic mesoporous MCM-41 silica was measured gravimetrically at room temperature and pressure up to 25 bar. The ideal adsorption solution theory (IAST) was validated and used for the prediction of CO2/N2, CO2/CH4, CO2/H2 binary mixture adsorption equilibria on MCM-41 using single components adsorption data. In all cases, MCM-41 showed preferential CO2 adsorption in comparison to the other gases, in agreement with CO2/N2, CO2/CH4, CO2/H2 selectivity determined using IAST. In comparison to well known benchmark CO2 adsorbents like activated carbons, zeolites and metal-organic frameworks (MOFs), MCM-41 showed good CO2 separation performances from CO2/N2, CO2/CH4 and CO2/H2 binary mixtures at high pressure, via pressure swing adsorption by utilizing a medium pressure desorption process (PSA-H/M). The working CO2 capacity of MCM-41 in the aforementioned binary mixtures using PSA-H/M is generally higher than 13X zeolite and comparable to different activated carbons.  相似文献   

20.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号