共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation of CO2/CH4 separation is industrially important especially for natural gas processing. In the past decades, polymeric membranes separation technology has been widely adopted for CO2/CH4 separation. However, polymeric membranes are suffering from plasticization by condensable CO2 molecules. Thus, carbon molecular sieve membranes (CMSMs) with excellent separation performance and stability appear to be a promising candidate for CO2/CH4 separation. A commercially available polyimide, P84 has been chosen as a precursor in preparing carbon membranes for this study. P84 displays a very high selectivity among the polyimides. The carbonization process was carried out at 550–800 °C under vacuum environment. WAXD and density measurements were performed to characterize the morphology of carbon membranes. The permeation properties of single and equimolar binary gas mixture through carbon membranes were measured and analyzed. The highest selectivity was attained by carbon membranes pyrolyzed at 800 °C, where the pyrolysis temperatures significantly affected the permeation properties of carbon membranes. A comparison of permeation properties among carbon membranes derived from four commercially available polyimides showed that the P84 carbon membranes exhibited the highest separation efficiency for CO2/CH4 separation. The pure gas measurement underestimated the separation efficiency of carbon membranes, due to the restricted diffusion of non-adsorbable gas by adsorbable component in binary mixture. 相似文献
2.
3.
We modify multi-wall carbon nanotubes (MWCNTs) by plasma treatment with N2 and Ar for varying durations and measure their field emission characteristics. The N2 treated MWCNTs showed significant improvement in field emission properties, while the Ar treated MWCNTs displayed poorer field emission characteristics compared to untreated MWCNTs. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy and work function measurements are used to investigate the field emission mechanisms after plasma treatments. 相似文献
4.
5.
Mekala BikshapathiAshish Sharma Ashutosh Sharma Nishith Verma 《Chemical Engineering Research and Design》2011,89(9):1737-1746
In this study, a hierarchal web of carbon micro and nanofibers was used as a precursor for the synthesis of a carbon molecular sieve (CMS). CMSs were prepared by thermal treatment of carbon fibers using a microwave heating device. The heating power and treatment time were optimized for the maximum performance of the prepared CMS for the separation of CO2 at low concentrations from the gaseous mixture of CO2 and air under dynamic (flow) conditions. Based on the experimental data, microwave power input of 240 W and treatment time of 15 min were found to be suitable for the maximum uptake of CO2 by CMS. Adsorption breakthrough curves were obtained at different gas flow rates and CO2 concentrations. CMSs prepared from the hierarchal web of carbon micro and nanofibers were found to be superior to those prepared from ACF. The CO2 uptake was determined to be approximately 0.88 mg/g and 10 mg/g at concentrations of 500 ppm and 5000 ppm, respectively, in air. 相似文献
6.
Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5
Adsorption and separation of N2, CH4, CO2, H2 and CO mixtures in CMK-5 material at room temperature have been extensively investigated by a hybrid method of grand canonical Monte Carlo (GCMC) simulation and adsorption theory. The GCMC simulations show that the excess uptakes of pure CH4 and CO2 at 6.0 MPa and 298 K can reach 13.18 and 37.56 mmol/g, respectively. The dual-site Langmuir–Freundlich (DSLF) model was also utilized to fit the absolute adsorption isotherms of pure gases from molecular simulations. By using the fitted DSLF model parameters and ideal adsorption solution theory (IAST), we further predicted the adsorption separation of N2–CH4, CH4–CO2, N2–CO2, H2–CO, H2–CH4 and H2–CO2 binary mixtures. The effect of the bulk gas composition on the selectivity of these gases is also studied. To improve the storage and separation performance, we finally tailor the structural parameters of CMK-5 material by using the hybrid method. It is found that the uptakes of pure gases, especially for CO2, can be enhanced with the increase of pore diameter Di, while the separation efficiency is apparently favored in the CMK-5 material with a smaller Di. The selectivity at Di=3.0 nm and 6.0 MPa gives the greatest value of 8.91, 7.28 and 27.52 for SCO2/N2, SCH4/H2 and SCO2/H2, respectively. Our study shows that CMK-5 material is not only a promising candidate for gas storage, but also suitable for gas separation. 相似文献
7.
Shiguang Li John L. Falconer Richard D. Noble 《Microporous and mesoporous materials》2008,110(2-3):310-317
Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower. 相似文献
8.
Mechanical properties of long multi-walled CNT ropes prepared using the floating catalyst chemical vapour deposition method were tested, obtaining an average tensile strength and Young’s modulus of 210 MPa and 2.2 GPa, respectively. Furthermore, the ropes showed excellent NH3 detecting sensitivity at both high and low NH3 concentrations. Increasing the temperature, NH3 desorbed from the ropes, indicating an exothermal absorption reaction. 相似文献
9.
10.
Youssef Belmabkhout 《Chemical engineering science》2009,64(17):3729-107
Adsorption equilibrium capacity of CO2, CH4, N2, H2 and O2 on periodic mesoporous MCM-41 silica was measured gravimetrically at room temperature and pressure up to 25 bar. The ideal adsorption solution theory (IAST) was validated and used for the prediction of CO2/N2, CO2/CH4, CO2/H2 binary mixture adsorption equilibria on MCM-41 using single components adsorption data. In all cases, MCM-41 showed preferential CO2 adsorption in comparison to the other gases, in agreement with CO2/N2, CO2/CH4, CO2/H2 selectivity determined using IAST. In comparison to well known benchmark CO2 adsorbents like activated carbons, zeolites and metal-organic frameworks (MOFs), MCM-41 showed good CO2 separation performances from CO2/N2, CO2/CH4 and CO2/H2 binary mixtures at high pressure, via pressure swing adsorption by utilizing a medium pressure desorption process (PSA-H/M). The working CO2 capacity of MCM-41 in the aforementioned binary mixtures using PSA-H/M is generally higher than 13X zeolite and comparable to different activated carbons. 相似文献
11.
J. Janas R. Janik T. Machej E. M. Serwicka E. Biela
ska E. Bastardo-Gonzalez W. Jones 《Catalysis Today》2000,59(3-4):241-248
Zirconium-containing mesoporous silica of nominal Si/Zr ratio in the range 40–5 have been synthesized using dodecylamine as a structure-directing surfactant. The samples were characterized with PXRD, SEM/EDX, BET, CEC measurement and chemical analysis. The materials were used as supports for chromium species incorporated by means of cation exchange procedure. Gradual substitution of Si by Zr in the mesoporous framework results in an increasing structural disorder, increasing cation exchange capacity and increasing capacity for incorporation of Cr. All Cr-doped ZrMMSx catalysts are active in the deep oxidation of methylene chloride reaching 100% conversion at temperature ≥400°C. The catalytic performance depends strongly on the catalyst composition. The role of particular components in determining the catalytic activity and selectivities to various products is discussed. 相似文献
12.
Selective adsorption and transport of gases in coal are important for natural gas recovery and carbon sequestration in depleted coal seams for environmental remediation. Gases are stored in coal mainly in the adsorbed state. In this study, the interaction energies of adsorbates (CO2, CH4, and N2) and micropores with various widths are investigated using a slit-shape pore model. The experimental adsorption rate data of the three gases conducted on the same coal sample are numerically simulated using a bidisperse model and apparent diffusivities of each adsorbate in the macropore and micropore are determined. The results indicate that the relative adsorbate molecule size and pore structure play an important role in selective gas adsorption and diffusion in micropores. Generally, the microporous coals diffusion is activated and the apparent micropore diffusivities of gases in coal decrease strongly with increase in gas kinetic diameters. Apparent micropore diffusivity of CO2 is generally one or two order of magnitude higher than those of CH4 and N2 because their kinetic diameters have the relation: CO2 (0.33 nm)<N2 (0.36 nm)<CH4 (0.38 nm). In contrast to theoretical values, apparent macropore diffusivity of CO2 is also larger than those of CH4 and N2, suggesting that coal has an interconnected pore network but highly constricted by ultra micropores with width <∼0.6 nm. It is also found that the apparent diffusivity strongly decreases with an increase in gas pressure, which may be attributed to coal matrix swelling caused by gas adsorption. Therefore, rigorous modeling of gas recovery and production requires consideration of specific interaction of gas and coal matrix. 相似文献
13.
The growth of carbon nanofibers from Fe-Cu catalyzed decomposition of CO/C2H4/H2 mixtures at temperatures over the range 500-650 °C has been investigated. Based on analysis of the gas phase and solid products it is apparent that co-adsorption of CO and C2H4 induces major perturbations in the surfaces of the bimetallic catalyst particles. These features are reflected in an increase in the yield of solid carbon and subtle changes in the structural characteristics of the carbon nanofibers. Optimum performance with respect to the yield of carbon nanofibers is found for iron-rich particles treated in CO/C2H4/H2 (1:3:1) at 600 °C. Deactivation of the catalyst is observed to occur with high Cu concentrations and at reaction temperatures in excess of 600 °C. It is suggested that under these conditions the surface of the particles in contact with the reactant gas mixture become enriched in Cu, which does not possess the ability to dissociatively chemisorb either CO or C2H4. 相似文献
14.
Adsorption of carbon dioxide, ethane, and methane on titanosilicate type molecular sieves 总被引:1,自引:0,他引:1
Alejandro Anson Steven M. Kuznicki James A. Sawada 《Chemical engineering science》2009,64(16):3683-3687
The separation of carbon dioxide from light hydrocarbons is a vital step in multiple industrial processes that could be achieved by pressure swing adsorption (PSA), if appropriate adsorbents could be identified. To compare candidate PSA adsorbents, carbon dioxide, methane, and ethane adsorption isotherms were measured for cation exchanged forms of the titanosilicate molecular sieves ETS-10, ETS-4, and RPZ. Mixed cation forms, such as Ba/H-ETS-10, may offer appropriate stability, selectivity, and swing capacity to be utilized as adsorbents in CO2/CH4 PSA processes. Certain cation exchanged forms of ETS-4 were found to partially or completely exclude ethane by size, and equivalent RPZ materials were observed to exclude both methane and ethane, while allowing carbon dioxide to be substantially adsorbed. Adsorbents such as Ca/H-ETS-4 and Ca/H-RPZ are strong candidates for use in PSA separation processes for both CO2/C2H6 and CO2/CH4, potentially replacing current amine scrubber systems. 相似文献
15.
M. Rezaei S.M. Alavi S. Sahebdelfar Peng Bai Xinmei Liu Zi-Feng Yan 《Applied catalysis. B, Environmental》2008,77(3-4):346-354
Mesoporous nanocrystalline zirconia with high-surface area and pure tetragonal crystalline phase has been prepared by the surfactant-assisted route, using Pluronic P123 block copolymer surfactant. The synthesized zirconia showed a surface area of 174 m2 g−1 after calcination at 700 °C for 4 h. The prepared zirconia was employed as a support for nickel catalysts in dry reforming reaction. It was found that these catalysts possessed a mesoporous structure and even high-surface area. The activity results indicated that the nickel catalyst showed stable activity for syngas production with a decrease of about 4% in methane conversion after 50 h of reaction. Addition of promoters (CeO2, La2O3 and K2O) to the catalyst improved both the activity and stability of the nickel catalyst, without any decrease in methane conversion after 50 h of reaction. 相似文献
16.
Mesoporous Ni-CaO-ZrO2 nanocomposites with high thermal stability were designed and employed in the CO2/CH4 reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO2 and promoted the gasification of deposited coke on the catalyst. 相似文献
17.
Copper catalysts supported on acid treated activated carbon (AC) were prepared, characterized and tested in terms of their SO2 oxidation activity. Reactions of CuO-AC in flow systems with sulfur dioxide, oxygen and nitrogen streams were investigated to determine the types of chemical interactions that occur on the sorbent surface. The effects of reaction temperature, acid treatment, metal loading, support particle size, SO2 concentration and O2 concentration on SO2 oxidation activity were evaluated. It was found that carbon materials used as catalyst supports for copper oxide catalysts provided a high catalytic activity for adsorbing SO2 from flue gas and oxidizing it. Acid pretreatment of the carbon supports increased the content of specific surface chemical groups to enhance the catalytic activity for SO2 oxidation. Metal loading, as well as support particle size, have a significant influence on the SO2 activity. The supported metals rather than surface oxygen functional groups on AC may be the active sites for adsorbing SO2. 相似文献
18.
The Fe(CO)5 catalyzed pyrolysis of pentane was investigated. The study, performed in a quartz tube, revealed that a range of carbonaceous materials could be formed with products determined by the temperature profile in the tube, the Fe(CO)5 content in pentane, the carrier gas flow rate, the pyrolysis temperature and the pyrolysis time. The distribution of carbonaceous products also depends on the competition of the pyrolysis of Fe(CO)5 and pentane in the different regions of the reactor. Carbonaceous materials produced included graphite film, carbon nanotubes and carbon nanoballs. The formation of carbon nanotubes takes place in a region in the quartz tube where both the pyrolysis of both Fe(CO)5 and pentane occur, with carbon nanotubes formed by the pyrolysis of pentane. Alignment of carbon nanotubes was found when a high Fe(CO)5 concentration was used. 相似文献
19.
CO2 capture using some fly ash-derived carbon materials 总被引:1,自引:0,他引:1
A. Arenillas 《Fuel》2005,84(17):2204-2210
Adsorption is considered to be one of the more promising technologies for capturing CO2 from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO2 sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO2 adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75 °C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO2 seems to remain after desorption, suggesting that the process is fully reversible. 相似文献
20.
This work investigates the electric field effect on nitrogen oxide (NO) pollutant formation and emission composition of premixed flames in order to provide better insight on the mechanism of controlling the combustion process by electro-physical means. The present study aims to investigate experimentally the effect of radial DC electric field on premixed laminar methane flame. The electric field effect on flame shape, emission composition and NO emission index of flame is investigated experimentally under the action of direct-current electric field under varying equivalence ratio and level of oxygen enrichment. The results show that ionic wind effects cause the distortion in flame shape. The ionic wind effects diminish with increasing flow rate and level of oxygen enrichment. Minimal effects on NO are measured for flames under the influence of electric field and vanished as the level of oxygen enrichment is increased. This was well supported by the temperature profile measurement in the post flame gas showing no field-induced modification also. It seemed that the action of an electric field on a flame with a geometry that remains practically undeformed produces very minimal effect on pollutant emission. 相似文献