共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the reaction atmosphere on the type of single-walled carbon nanotubes (SWNT) grown during chemical vapor deposition (CVD) was investigated. Methane decomposition was catalyzed by Fe/MgO and Fe-Mo/MgO catalysts in argon, nitrogen and their mixtures. Nitrogen influences the carbon species significantly. The aggregation of iron nanoparticles in nitrogen results in the growth of N-doped carbon nanofibers on the Fe/MgO catalyst. A limited iron nanoparticle aggregation in nitrogen occurred on a Fe-Mo/MgO catalyst, on which there was an increase in the diameter of the SWNTs as the reaction atmosphere was more enriched in nitrogen, which was characterized by Raman spectroscopy. These results provide an experimental basis for the rational selection of the reaction atmosphere, and suggest an approach to control the size of the SWNTs in a CVD method. 相似文献
2.
Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method 总被引:1,自引:0,他引:1
The methane conversion and carbon yield of the chemical vapor deposition (CVD) reaction suggests that the optimum reaction conditions of the formation of multi-wall carbon nanotubes (MWCNTs) can be obtained by using a 50 mg of nano-MgNi alloy under pyrolysis of the pure CH4 gas with the flow rate about 100-120 cm3/min at 650 °C for 30 min. Raman results indicate the CNTs are in multi-wall structure, since no single-wall characteristic features appearing in the 200-400 cm−1 region. This is consistent with those of the XRD and TGA findings. Under selected condition, the carbon yield and the CNTs purity can reach up to 1231% and 92% in the presence of hydrogen. It is presumable that the presence of hydrogen in the pyrolysis of CH4 prevents the deactivation of catalysts and enhances the graphitization degree of CNTs. In addition, the presence of Mg metal in the alloy can prevent the aggregation of the Ni metal and forms the active Mg2Ni phase to enhance the CH4 pyrolysis to form CNTs. After the purification procedures with both air oxidation at 550 °C and HCl treatments, the final purified yield and purity of CNT reach to 73.2% and (98.04 ± 0.2)% respectively. 相似文献
3.
A novel reinforcing material based on the concept of an uniform 3-dimensional distribution of carbon nanotubes directly grown on yarns of carbon fibres has been developed. This material shows a potential for applications in polymeric matrix composites, combining the properties of carbon nanotubes with those of a traditional reinforcement.In view of the dipping process of the CNT coated fibres into a polymeric matrix, a good anchorage of CNT to the fibre surface is mandatory. Carbon fibres coated with metallic clusters and CNT were immersed into different liquids (deionised water, ethanol, n-butanol, acetone) and processed with different treatments (immersion, magnetic stirring, centrifugation and ultrasonic bath) in order to test their behaviour in different stressing environments. The morphological features of the samples were characterised by SEM both before and after the tests, demonstrating a good adhesion of the three-component material, which was not destroyed even after the most aggressive test. 相似文献
4.
5.
The growth time, growth mode and the method of preparing the supported catalysts play an important role in the growth of single-walled nanotubes (SWNTs). Their effects on the chemical vapor deposition (CVD) growth of SWNTs with MgO-supported catalysts were investigated in this study. It is shown that the growth rate of SWNTs was large during the initial few minutes of growth, however the quality of the tubes was low owing to the formation of many defects. Long term growth may favor the formation of tubes with high quality and high yield, but the introduction of other forms of carbon (impurities) is also unavoidable. There was a balance between the increase in yield and quality and sacrifice of the purity during growth of SWNTs. MgO-supported catalysts prepared by the co-precipitation method were found to be more effective for the synthesis of SWNTs than those prepared by the widely used impregnation method. The size and dispersion state of the catalyst were found to be crucial in enhancing the growth of SWNTs. In addition, growth on the surface of SWNTs over nanosized catalyst films was shown to be more favorable for the synthesis of tube products with higher quality, yield and purity. 相似文献
6.
Shoichi KamikuraTakashi Uchida Kenta NakaToyohisa Asaji Hidefumi UchiyamaYoshikazu Yoshida 《Diamond and Related Materials》2011,20(7):863-865
We demonstrate that the Co nanoparticles prepared by vacuum deposition on a surface-active liquid can be used as catalysts of single-walled carbon nanotube (SWCNT) growth using alcohol catalytic chemical vapor deposition method. These Co nanoparticles are embedded in the y-type zeolite powder. The Co nanoparticles used in this study is the highly efficient catalysts for CNT growth, which is comparable to the commonly-used Co-Fe binary metal catalysts embedded in the y-type zeolite. The preparation method of the metal nanoparticles used in this study is very simple. Thus, such metal nanoparticles might be promising as catalysts of CNT growth. 相似文献
7.
Weizhong Qian Tang Liu Zhanwen Wang Hao Yu Zhifei Li Fei Wei Guohua Luo 《Carbon》2003,41(13):2487-2493
The synthesis of carbon nanotubes (CNTs) from ethylene decomposition by Fe/Al2O3 and Fe/Ni/Al2O3 catalysts (Fe:Ni=10:1) is studied. A small amount of nickel introduced into the catalyst can significantly increase the yield of CNTs, but the nanotubes change from straight tubes with concentric parallel carbon sheets to helical tubes of the fish-bone type. Raman characterization of CNTs prepared at 823 and 1023 K and CNTs annealed at 2473 K shows that CNTs deposited on the Fe/Ni/Al2O3 catalyst have poor crystallinity, as compared with that on the Fe/Al2O3 catalyst. These differences are explained by a mechanism of formation of helical tubes of the fish bone type that takes into consideration the differences in the chemical nature of the catalyst with and without nickel. 相似文献
8.
9.
10.
Single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs, respectively) of controlled diameter distribution were selectively grown by thermal decomposition of a botanical hydrocarbon, camphor, on a high-silica zeolite support impregnated with Fe-Co catalyst. Effects of catalyst concentration, growth temperature and camphor vapor pressure were investigated in wide ranges, and diameter distribution statistics of as-grown nanotubes was analyzed. High yields of metal-free MWNTs of fairly uniform diameter (∼10 nm) were grown at 600-700 °C, whereas significant amounts (∼30%) of SWNTs were formed at 850-900 °C within a narrow diameter range of 0.86-1.23 nm. Transmission electron microscopy and micro-Raman spectroscopy reveal that camphor-grown nanotubes are highly graphitized as compared to those grown from conventional CNT precursors used in chemical vapor deposition. 相似文献
11.
12.
A. Grüneis M.H. Rümmeli C. Kramberger A. Barreiro T. Pichler R. Pfeiffer H. Kuzmany T. Gemming B. Büchner 《Carbon》2006,44(15):3177-3182
We have synthesized double wall carbon nanotubes (DWNTs) with few defects and little amorphous carbon by hot wall chemical vapor deposition (CVD) of alcohol. Catalysts for the DWNT growth were made from cobalt and molybdenum acetates. Scanning electron microscopy, transmission electron microscopy, multi frequency resonance Raman spectroscopy and optical absorption spectroscopy were used for characterization of the product with regard to DWNT yield, the nanotube diameter distribution, defect concentration and amorphous carbon content. Base pressures lower than 1 × 10−5 mbar in the CVD reactor considerably suppress defects in the DWNTs. Optimized growth conditions for DWNT formation are presented. 相似文献
13.
14.
15.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a chemical vapor deposition floating feed method in a vertical reactor. Effects of the preparation variables on the average diameter of carbon nanotubes were systematically examined using the fractional factorial design (FFD), path of the steepest ascent, and central composite design (CCD) coupled with the response surface methodology. From the FFD study, the main and interactive effects of reaction temperature, methane flow rate, and chamber pressure were concluded to be the key factors influencing the diameter of MWNTs. Two empirical models, representing the dependence of the diameter of carbon nanotubes at the vicinities around maximum (420 nm) and minimum (15 nm) on the reaction temperature and methane flow rate, were constructed in two independent CCD studies. These models, shown as contour diagrams, indicated that the diameter of carbon nanotubes generally increased with increasing reaction temperature and methane flow rate. Based on both models, the diameter of MWNTs from 15 to 420 nm can be controlled precisely by using a continuous CVD fabrication method. 相似文献
16.
17.
18.
Guang-Yong Xiong 《Carbon》2006,44(5):969-973
Single crystal magnesium oxide (MgO) was found to be very beneficial to the growth of aligned carbon nanotube (CNT) arrays as long as 2.2 mm by chemical vapor deposition. Before growth, a thin film of catalyst (iron) was coated on the MgO by magnetron sputtering. Scanning electron microscopy was used to study the alignment and length, and transmission electron microscopy was used to exam the wall numbers, diameter, and graphitization. It was found that the number of walls as few as two can be controlled by the catalyst film thickness, whereas the length is a combined result of gas pressure, temperature, and time during growth. Water was found not to be a factor to the length of CNTs grown on MgO, but a significant factor when sapphire was used as the substrates. 相似文献
19.
The cytotoxicity of different samples of carbon nanotubes synthesised by catalytic chemical vapour deposition was investigated towards human umbilical vein endothelial cells, using two cytotoxicity standard assays (neutral red assay for the cell viability and MTT assay—tetrazolinium salt—for the cell metabolic activity). No cytotoxicity was found for any sample. 相似文献