首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The decomposition of aqueous ozone in the presence of three aluminum (hydroxyl) oxides was studied, respectively. It was hypothesized that surface hydroxyl groups and acid–base properties of aluminum (hydroxyl) oxides play an important role in catalyzed ozone decomposition. The variables investigated were oxide dose, aqueous pH, presence of inorganic anions (sulfate and nitrate), the effect of tert-butyl alcohol (TBA) and surface hydroxyl groups density of the three aluminum (hydroxyl) oxides. All three aluminum (hydroxyl) oxides tested, i.e. γ-AlOOH (HAO), γ-Al2O3 (RAO) and α-Al2O3 (AAO), enhanced the rate of ozone decomposition. The net surface charge of the aluminum (hydroxyl) oxides favored in catalyzed ozone decomposition. The greatest effect on catalyzed ozone decomposition was observed when the solution pH was close to the point of zero charge of the aluminum (hydroxyl) oxide. Sulfate and nitrate were substituted for the surface hydroxyl groups of the aluminum (hydroxyl) oxides, which then complexed with Al3+ in a ligand exchange reaction. Therefore, inorganic anions may be able to inhibit catalyzed ozone decomposition. It was confirmed that surface hydroxyl groups were important for ozone decomposition with aluminum (hydroxyl) oxides as catalysts. TBA inhibited ozone decomposition in the presence of HAO, RAO and AAO. It was also tested whether aluminum (hydroxyl) oxides catalyzed ozone-transformed hydroxyl radicals. The relationship between surface hydroxyl groups and the ratio of hydroxyl radical concentration to ozone concentration (Rct) was investigated quantitatively. Higher density of surface hydroxyl groups of the aluminum oxide tested was favorable for the decay of ozone into hydroxyl radicals.  相似文献   

2.
Tar elimination and hot-gas conditioning in thermochemical conversion processes, i.e. thermal gasification, pyrolysis of heterogeneous materials involved two main classes of catalysts and/or additives: metallic and mineral oxides. This communication focused on the experimental kinetic data on catalytic steam cracking of vaporized toluene ( space-time ) as a tar-derived species and/or Volatile Organic Compound (VOC). Toluene (C7H8) has been chosen as a model formula for reactive tar-derived one-ring species determined from tar constituents. Gaseous product distribution data were obtained at atmospheric pressure steam pyrolysis temperature range of 923-1223 K and GHSV 1200-2300 Nm3 (m3 h)−1. The overall catalytic pyrolysis of toluene over a commercial available metal based catalyst NiMo/γ-Al2O3 was compared to the pyrolysis in presence of basic non-metallic mineral additives, i.e. Norwegian (Norsk Hydro) dolomitic magnesium oxide [MgO], Swedish low surface quicklime [CaO], and calcined dolomite [CaMg(O)2]. The operational conditions were applied without internal or external mass-transfer limitations. Kinetics for the pyrolysis could be described by first-order reactions for all the studied additives. The influence of hydrogen gas (30 vol%, ) and water vapor () in vaporized toluene cracking runs over low surface quicklime [CaO] was determined. A mechanistic model of the Langmuir-Hinshelwood type describing toluene decomposition was also developed.  相似文献   

3.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

4.
The decomposition of aqueous ozone in the presence of three aluminum (hydroxyl) oxides was studied, respectively. It was hypothesized that surface hydroxyl groups and acid–base properties of aluminum (hydroxyl) oxides play an important role in catalyzed ozone decomposition. The variables investigated were oxide dose, aqueous pH, presence of inorganic anions (sulfate and nitrate), the effect of tert-butyl alcohol (TBA) and surface hydroxyl groups density of the three aluminum (hydroxyl) oxides. All three aluminum (hydroxyl) oxides tested, i.e. γ-AlOOH (HAO), γ-Al2O3 (RAO) and α-Al2O3 (AAO), enhanced the rate of ozone decomposition. The net surface charge of the aluminum (hydroxyl) oxides favored in catalyzed ozone decomposition. The greatest effect on catalyzed ozone decomposition was observed when the solution pH was close to the point of zero charge of the aluminum (hydroxyl) oxide. Sulfate and nitrate were substituted for the surface hydroxyl groups of the aluminum (hydroxyl) oxides, which then complexed with Al3+ in a ligand exchange reaction. Therefore, inorganic anions may be able to inhibit catalyzed ozone decomposition. It was confirmed that surface hydroxyl groups were important for ozone decomposition with aluminum (hydroxyl) oxides as catalysts. TBA inhibited ozone decomposition in the presence of HAO, RAO and AAO. It was also tested whether aluminum (hydroxyl) oxides catalyzed ozone-transformed hydroxyl radicals. The relationship between surface hydroxyl groups and the ratio of hydroxyl radical concentration to ozone concentration (Rct) was investigated quantitatively. Higher density of surface hydroxyl groups of the aluminum oxide tested was favorable for the decay of ozone into hydroxyl radicals.  相似文献   

5.
A study of the effects of some parameters on the active chlorine production from aqueous sodium chloride solutions in the hypochlorite electrochemical production cells was undertaken. These varying parameters included the anodic surface area (Sa), the ratio of anodic and cathodic surface areas () the inter-electrode gap, and the type of the cathode used. In addition, a study of the performance of some electrochemical cells that differ in the type of anodes (platinum-coated titanium, ruthenium-coated titanium, and graphite) was made. By means of the experimental design method employing a full factorial of22 the effects ofthe most influencing parameters, the set-up of optimum conditions, and the formation of optimal concentration of active chlorine were assessed. Under the following conditions, a concentration of as high as 65.67 g/L of active chlorine was gained: ruthenium-coated titanium anode (Sa = 24 cm2); titanium cathode, ; inter-electrode gap, 0.5 cm; current density, 35 A/dm2 ; temperature, 20°C; concentration of NaCl aqueous solution, 3 M; time, 2 h.  相似文献   

6.
This paper reports work aimed at developing a new copper electrowinning cell based on reactive electrodialysis (RED) which uses Fe2+→Fe3++e as anodic reaction. In this lab-scale cell, the anolyte (aqueous FeSO4+H2SO4) and the catholyte (aqueous CuSO4+H2SO4) are kept separate by an anion membrane which prevents cation and water transport between the electrolytes. Both solutions are agitated by recirculation. The kinetics of the anodic reaction have been studied via potentiodynamic experiments on various anode materials (lead, platinum, ruthenium oxide, iridium oxide and graphite). The highest oxidation rate was obtained on platinum and the lowest one on lead, whereas the remaining materials showed satisfactory performance. Results in the lab-scale RED cell show that, depending on experimental conditions, for a cell current density of , the cell voltage ranges from 1.81 to , the cathodic current efficiency from 97.2% to 98.3% and the specific energy consumption, from 1.53 to of deposited copper.  相似文献   

7.
The kinetics of heterogeneous catalytic ozone decomposition in aqueous solution over composite iron-manganese silicate oxide (FMSO) was investigated. Results showed that the presence of FMSO significantly accelerated the ozone decomposition rate from 0.022 (without FMSO) to 0.101 min?1. The effects of inorganic anions and solution pH indicated that surface hydroxyl groups on FMSO were the active sites for catalyzing ozone decomposition and neutral charge surface seemed to show the highest catalytic performance. Tert-butanol inhibition experiments demonstrated that FMSO effectively accelerated the transformation rate of ozone into hydroxyl radicals. The contribution of hydroxyl radicals on ozone decomposition with and without FMSO was subsequently determined.  相似文献   

8.
9.
10.
11.
12.
Layered double hydroxides (LDHs) carbonate with the M2+/Al3+ (M=Mg or Zn) molar ratio of 2/1 has been synthesized by a gas-liquid contacting route with the decomposition of ammonium carbonate. The key feature of this method is a pH gradient germinated by the diffusion of NH3 and CO2 vapors in the metal salts solutions from solid (NH4)2CO3 in a closed environment. The physicochemical properties of these two particles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, simultaneous thermogravimetric and differential thermal analysis (TG-DTA), scanning electron micrograph (SEM) or transmission electron micrograph (TEM), laser particle size analysis and low-temperature N2 adsorption-desorption analysis. The results manifested that these two particles obtained by the method present well-crystalline, uniform crystallite size and relatively high surface area. The particle sizes of MgAl-LDH and ZnAl-LDH are around 0.55 and , respectively. Both the BET surface areas of them are about .  相似文献   

13.
Direct decomposition of nitrous oxide (N2O) on noble metal catalysts supported on alumina was examined in the presence of oxygen. The iridium catalysts supported on alumina showed higher activities than the other noble metal catalysts. Although the catalyst activity was affected by oxygen formed by N2O decomposition at lower temperatures, desorption of oxygen proceeded promptly at the temperature , and the catalytic activity was recovered by increasing the reaction temperature from 350 to . Therefore, the Ir/Al2O3 catalyst can be used for N2O decomposition in the presence of oxygen at relatively higher temperatures.  相似文献   

14.
The present investigation takes concern about a spiny environmental problem afflicting the pulp mill industry exploiting the Kraft sulfate-pulp process where dilute total reduced sulfur contaminants are co-mixed with oxygen in large-volume gas effluents. A potential Redox process for removing the total reduced sulfurs consists in oxidizing them by means of iron(III) organometallic complexes while the co-mixed oxygen mediates the oxidative regeneration of iron(II) into iron(III) complexes. In this work, the oxidation kinetics of iron(II) trans-1,2,-diaminocyclohexanetetraacetate (cdta) complexes with molecular oxygen (O2) as the source oxidant was investigated for a wide pH range (1.75<pH<12) in a 3.2 dm3 single-phase stirred cell reactor within the [281-323 K] temperature range. Simultaneous measurements of iron(II)-cdta (50-) and O2 (0.5-) were used to clarify the reaction mechanism which has been interpreted differently in previous works. The observed kinetic data in alkaline solutions could be accounted for in terms of three forward [Fe2+cdta4-+O2 (rate-limiting, k1,app), , 2Fe2+cdta4-+H2O2] and one reverse [ (k-1,app,n=0 or 1)] elementary steps. Assessment of the rate-limiting apparent rate constant led to the following results ( at and , , ). Fe3+OH-cdta4-, being the dominating iron(III) product at pH>10, was found to be less reactive than Fe3+cdta4- with the superoxide intermediate , thus reducing the effect of the reverse step at higher pH. A study on the effect of electrolytes on the reaction rate led to the conclusion that salts increase the rate constant k1,app. Finally, kinetic results in acidic conditions leading to the formation of other iron(II)-cdta complexes (i.e., Fe2+cdta4-H+) and another superoxide intermediates are reported and discussed.  相似文献   

15.
16.
17.
This paper focuses on the adsorption of gaseous trichloroethylene, toluene and chlorobenzene on the photocatalyst TiO2 Degussa P25. An optimized EPICS (Equilibrium Partitioning In Closed Systems) methodology was used to study equilibrium partitioning. For the three compounds investigated, equilibrium adsorption was reached within of incubation. Adsorption isotherms, determined at a temperature (T) of and relative humidities (RH) of 0.0% and 57.8% were found to be linear (R2>0.993,n=5), indicating that no monolayer surface coverage was reached in the concentration interval studied ). Within the linear part of the isotherm, the influence of both relative humidity and temperature was investigated in a systematic way and discussed from a thermodynamic point of view. Data analysis resulted in a double linear regression for 22% ?RH?90% and . The equilibrium adsorption coefficient represents the equilibrium concentration ratio and ΔUads is the internal energy of adsorption . At RH=0.0%, experimental K values were a factor 5-10 higher than those expected from the regression equation, indicating that another adsorption mechanism becomes important below monolayer surface coverage of TiO2 by water vapour molecules. Since surface interactions are of primary importance in photocatalytic reactions, this paper contributes to a better understanding of the basic mechanisms of TiO2 mediated heterogeneous photocatalysis and is an interesting tool for developing optimized mathematical models.  相似文献   

18.
The adsorption/desorption and deposition/dissolution phenomena occurring during the electrochemical transformations of phenazine (Ph) at a gold electrode in aqueous acidic solutions have been studied by cyclic and potential step electrochemical quartz crystal microbalance measurements. Phenazine exhibits two successive one-electron reduction steps in acidic media. In dilute phenazine solutions, the product of the first electron transfer is phenazylium cation radical () which adsorbs in the form of a phenazylium salt (ClO4, Cl) at the electrode surface. The perchlorate salt is highly soluble and the electroreduction takes place via a loosely adsorbed state. In chloride containing solutions, multilayer adsorption is observed. The second electron transfer in dilute phenazine solutions results in the formation of 5,10-dihydrophenazine (PhH2) in HClO4, which desorbs from the electrode surface. In HCl solutions, a substantial portion of the fully reduced product, which is a charged dimer, remains on the surface. In more concentrated phenazine solutions in the potential region of the second reduction wave, a deposition process can be observed, which is due to the formation of the quinhydrone-analogue, phenazinehydrine charge-transfer complex. The formation of the charge-transfer complex obeys a second-order kinetics, however, the rate of the film growth is influenced by the simultaneous dissolution process. The increase of the acid concentration enhances the dissolution, and may prevent the film formation. In dilute phenazine solutions, both redox waves are reversible and likewise the adsorption/desorption processes. In concentrated solutions, the reoxidation of the phenazinehydrine film results in a complicated voltammetric response related to a dissolution-redeposition-dissolution sequence.  相似文献   

19.
Experimental data on the rate of decomposition of CO2 gas hydrates has been obtained using a semi-batch stirred tank reactor, with an in-situ particle size analyser, at temperatures ranging from 274 to and pressures ranging from 1.4 to . A method for calculating the moments of the particle size distribution has been presented. The experimental data was analysed using the kinetic model of Clarke and Bishnoi (Determination of the intrinsic kinetics of gas hydrate decomposition kinetics using particle size analysis, Presented at the Third International Conference on Gas Hydrates, Salt Lake City, Utah, July 18-22, 1999; Chem. Eng. Sci. 55 (2000) 4869) in its differential form in order to account for the slight change in temperature during the decomposition of CO2 hydrates. The applicability of the new instrument for measuring gas hydrate decomposition kinetics was examined by conducting experiments with ethane at conditions similar to those encountered by Clarke and Bishnoi (2000). It was seen that the previously obtained rate constants for ethane hydrate decomposition were able to predict the new obtained data. A new procedure for regressing the intrinsic rate constant and activation energy has also been described and it is seen that the activation energy is and the intrinsic rate constant is for CO2 gas hydrate decomposition.  相似文献   

20.
Many commercial processes for the removal of carbon dioxide from high-pressure gases use aqueous potassium carbonate systems promoted by secondary amines. This paper presents thermodynamic and kinetic data for aqueous potassium carbonate promoted by piperazine. Research has been performed at typical absorber conditions for the removal of CO2 from flue gas.Piperazine, used as an additive in 20- potassium carbonate, was investigated in a wetted-wall column using a concentration of at 40-80°C. The addition of piperazine to a potassium carbonate system decreases the CO2 equilibrium partial pressure by approximately 85% at intermediate CO2 loading. The distribution of piperazine species in the solution was determined by proton NMR. Using the speciation data and relevant equilibrium constants, a model was developed to predict system speciation and equilibrium.The addition of piperazine to potassium carbonate increases the rate of CO2 absorption by an order of magnitude at 60°C. The rate of CO2 absorption in the promoted solution compares favorably to that of MEA. The addition of piperazine to potassium carbonate increases the heat of absorption from 3.7 to . The capacity ranges from 0.4 to for PZ/K2CO3 solutions, comparing favorably with other amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号