首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stabilization of PAN/SWNT composite fiber   总被引:1,自引:0,他引:1  
Byung G. Min  Satish Kumar 《Carbon》2005,43(3):599-604
PAN/SWNT composite fibers have been spun with 0, 5, and 10 wt% single wall carbon nanotubes (SWNTs). Tensile fracture surfaces of polyacrylonitrile (PAN) fibers exhibited extensive fibrillation, while for PAN/SWNT composite fibers, tendency to fibrillate decreased with increasing SWNT content. The reinforcing effect of SWNTs on the oxidized polyacrylonitrile (PAN) fiber has been studied. At 10 wt% SWNTs, breaking strength, modulus, and strain to failure of the oxidized composite fiber increased by 100%, 160%, and 115%, respectively. Tensile fracture surfaces of thermally stabilized PAN and the PAN/SWNT fibers exhibited brittle behavior and well distributed SWNT ropes covered with the oxidized matrix can be observed in the tensile fracture surfaces of the fibers. No de-bonding has been observed between unoxidized or the oxidized PAN matrix and the nanotube ropes. Higher strain to failure of the oxidized composite fiber as compared to that of the oxidized control PAN fiber also suggests good adhesion/interaction between SWNT and the oxidized matrix. Thermal stresses generated on the composite fiber during the oxidation process were lower than those for the control fiber. The potential of PAN/SWNT composite fiber as the precursor material for the carbon fiber has been discussed.  相似文献   

2.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The effect of single walled carbon nanotubes (SWNT) at zirconia grain boundaries on the stability of a tetragonal zirconia polycrystalline matrix has been explored in as–sintered composites and after low–temperature hydrothermal degradation (LTD) experiments. For this purpose, highly–dense 3?mol% Y2O3–doped tetragonal zirconia polycrystalline (3YTZP) ceramics and SWNT/3YTZP composites were prepared by spark plasma sintering (SPS). Quantitative X–ray diffraction analysis and microstructural observations point out that an increasing amount of well–dispersed SWNT bundles surrounding zirconia grains decreases the metastable tetragonal phase retention in the ceramic matrix after sintering. In contrast, the tetragonal ceramic grains in composites with SWNTs are less sensitive to the presence of water, i.e. to undergo a martensitic transformation under LTD conditions, than monolithic 3YTZP ceramics. The SWNT incorporation diminishes micro–cracking due to tetragonal to monoclinic ZrO2 phase transformation in the composites.  相似文献   

4.
Poly(methyl methacrylate) (PMMA)/single‐walled carbon nanotube (SWNT) composites were synthesized by the grafting of PMMA onto the sidewalls of SWNTs via in situ radical polymerization. The free‐radical initiators were covalently attached to the SWNTs by a well‐known esterification method and confirmed by means of thermogravimetric analysis and Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy were used to image the PMMA–SWNT composites; these images showed the presence of polymer layers on the surfaces of debundled, individual nanotubes. The PMMA–SWNT composites exhibited better solubility in chloroform than the solution‐blended composite materials. On the other hand, compared to the neat PMMA, the PMMA–SWNT nanocomposites displayed a glass‐transition temperature up to 6.0°C higher and a maximum thermal decomposition temperature up to 56.6°C higher. The unique properties of the nanocomposites resulted from the strong interactions between the SWNTs and the PMMA chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Poly(3,4‐ethylenedioxythiophene)‐single wall carbon nanotube (SWNT) composites were prepared via coating methods for improving electrical conductivity and flexibility, minimizing loss of transparency. Three types of surface modified SWNTs were prepared through different modification methods: carboxylated SWNT treated with nitric acid to form carboxylic acid group on their surfaces, 1‐pyrenebutyric acid wrapped SWNT, and 1‐pyrenebutyric acid, lithium salt wrapped SWNT. The surface modifiers had influence on the dispersion states of the SWNTs in 2‐propanol. The dispersion states had influence of aggregate concentrations of surface modified SWNTs in polymer matrix, showing lower aggregate concentration for the carboxylated SWNT than those of the other surface modified SWNTs. The dispersion behaviors of SWNTs were also related with transparency and electrical resistance, and flexibility of composite films. Based on the layer‐by‐layer coating method, SWNT composite film properties such as thickness, transparency, and electrical conductivity could be controlled and would be a good example for improving contradictory properties. POLYM. ENG. SCI., 48:1–10, 2008. © 2007 Society of Plastics Engineers  相似文献   

6.
Si3N4 nanocomposites reinforced with 1-, 2-, and 6-vol% single-walled carbon nanotubes (SWNTs) were processed using spark plasma sintering (SPS) in order to control the thermal and electrical properties of the ceramic. Only 2-vol% SWNTs additions were used to decrease the room temperature thermal conductivity by 62% over the monolith and 6-vol% SWNTs was used to transform the insulating ceramic into a metallic electrical conductor (92 S m−1). We found that densification of the nanocomposites was inhibited with increasing SWNT concentration however, the phase transformation from α- to β-Si3N4 was not. After SPS, we found evidence of SWNT survival in addition to sintering induced defects detected by monitoring SWNT peak intensity ratios using Raman spectroscopy. Our results show that SWNTs can be used to effectively increase electrical conductivity and lower thermal conductivity of Si3N4 due to electrical transport enhancement and thermal scattering of phonons by SWNTs using SPS.  相似文献   

7.
Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single‐walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water‐soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo‐UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Dynamically vulcanized thermoplastic elastomer based on Nitrile butadiene-rubber (NBR)/PVC with functionalized single-walled carbon nanotubes (f-SWNTs) and non-functionalized single-walled carbon nanotubes (SWNTs) were prepared using a brabender internal mixer. Effects of two types of SWNTs (functionalized and non-functionalized) on morphology and mechanical properties of NBR/PVC blends were studied. Results showed that the mechanical properties of NBR/PVC/SWNTs nanocomposites improved with the increasing of SWNTs content and in particular with the increase of f-SWNTs content. Moreover, the enhancement of mechanical properties of NBR/PVC blends reinforced with functionalized SWNT was higher than that of NBR/PVC blends with non-functionalized SWNT. Dispersion of SWNTs and morphology of NBR/PVC/SWNT nanocomposites were determined by scanning electron microscopy and transmission electron microscopy (TEM) techniques. TEM images illustrated that f-SWNTs were dispersed uniformly in NBR/PVC matrix while non-functionalized SWNTs showed much aggregation. Dynamic mechanical thermal analysis of NBR/PVC/SWNTs nanocomposites was also studied. The outcomes indicated that in the case of f-SWNTs, the intensity of tan ?? peak was lower than that in the case of non-functionalized SWNTs. Meanwhile, the intensity of tan ?? peak reduced when the content of f-SWNTs was increased.  相似文献   

9.
Poly (p-phenylene benzobisoxazole) (PBO) fibers are some of the strongest organic polymer fibers. However, the introduction of single-walled carbon nanotubes (SWNT) into the PBO backbone might lead to improvements in their alignment and physical properties. Therefore, SWNT was cut and functionalized by three oxidative cutting methods. After cutting, three different types of SWNT were obtained. Furthermore, copolymerization of SWNTs with PBO polymer was successfully carried out in a mixed solvent of polyphosphoric acid and methanesulfonic acid. The SWNTs were homogeneously distributed throughout the films of copolymerized products, as determined by Raman spectroscopy. The benzoxazole moieties could be formed between the carboxyl of SWNTs and o-aminophenol derivatives of PBO polymer. The length of SWNTs affected the dispersion and reaction activity. Short SWNTs could react with the PBO polymer more easily and form more covalent bonds.  相似文献   

10.
采用稀土催化剂利用原位聚合的方法,把聚异戊二烯接枝到单壁碳纳米管表面,制备了聚异戊二烯(PIp)/单壁碳纳米管(SWNT)复合材料。扫描电镜(SEM)被用来表征聚异戊二烯-接枝-SWNTs样品,显示相当均匀的聚合物出现在单个的或几束碳纳米管上。碳纳米管同聚异戊二烯的良好相容性提高了复合材料的玻璃化温度。大比表面积的碳纳米管和聚异戊二烯基质材料的较强的相互作用是聚异戊二烯纳米/碳纳米管复合材料具有独特性质原因。  相似文献   

11.
Single‐walled carbon nanotubes (SWNTs) were modified with polyethylene (PE) prepared by in situ Ziegler–Natta polymerization. Because of the catalyst pretreated on the surface of the SWNTs, the ethylene was expected to polymerize there. Scanning electron microscopy images and solubility measurements showed that the surface of the SWNTs was covered with a PE layer, and a crosslink may have formed between the SWNTs and PE. When the SWNTs covered with a PE layer were mixed with commercialized PE by melt blending, the resulting composite had better mechanical properties than the composite from the SWNTs without a PE layer. The yield strength, the tensile strength and modulus, the strain at break, and the fracture energy of the modified‐SWNT/PE composites were improved by 25, 15.2, 25.4, 21, and 38% in comparison with those of the raw‐SWNT/PE composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3697–3700, 2004  相似文献   

12.
The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1?:?1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found.  相似文献   

13.
《Ceramics International》2017,43(2):2297-2304
A Novel approach to fabricate high performance SiCN ceramic nanocomposites containing well dispersed single-walled carbon nanotubes (SWNTs) assisted by room temperature ionic liquids (RTILs) is developed. This method is straightforward, environment-friendly and overcome the typical challenges in the synthesis procedures of SWNTs reinforced precursor derived ceramics (PDCs). The microstructural and elemental characteristics of these ceramic matrix nanocomposites present highly-dispersed SWNTs were introduced and a profitably BN(C) interlayer could be formed in situ between the SWNTs and the ceramic matrix, which resulting in a high performance and a crack free ceramic product. Compared to the pure monolithic SiCN ceramic, the Young's modulus enhanced by ~11% and the electrical conductivities increased up to 0.06 S cm−1 for ceramic composite in the case of the 1 wt% SWNTs was containing. Furthermore, the electrochemical investigation shows the potential application of these SWNTs-IL/Ceramics composites in electrochemical hydrogen storage.  相似文献   

14.
The effects of the incorporation of single‐walled carbon nanotubes (SWNTs) on the physical and mechanical properties of thermoplastic elastomers based on blends of isotactic polypropylene (iPP) and ethylene–propylene–diene rubber (EPDM) are described. A marked decrease of the half‐time of PP–EPDM crystallization and a sensible increase of the overall crystallization rate were observed in the presence of SWNTs. These results confirmed the expected nucleant effect of nanotubes on the crystallization of polypropylene. This effect was not linearly dependent on the SWNTs' content, showing a saturation of the nucleant effect at high nanotube concentrations. Dynamic mechanical analysis results showed a significant and controversial change of the mechanical behavior of the PP–EPDM/SWNT composites depending on the nanotube content. In particular, the storage modulus increased at the lowest incorporation of SWNTs, whereas a further increase of nanotubes led to a reduction of the storage modulus with respect to the pristine polymer matrix. Raman spectroscopy and scanning electron microscopy were successfully applied to demonstrate that in the composite films, the changes in the crystallization kinetics and mechanical properties could be explained in terms of the changes of the distance between nanotubes in bundles after a different intercalation of the polymer matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2657–2663, 2003  相似文献   

15.
Scanning probe microscopy (SPM) techniques based on nano-mechanical measurements (topography, adhesion, modulus) and electric force microscopy (EFM) have been used to examine mica surfaces modified with the ionic-complementary peptide EFK8 alone and with EFK8–single-walled carbon nanotube (SWNT) dispersions in water in order to gain a deeper understanding of the interaction between nanotubes and ionic-complementary peptides. Through the use of these techniques, it has been shown for the first time that peptide fibers can be distinguished from SWNTs and peptide-wrapped SWNTs. SPM images reveal features consistent with two types of helical structures: EFK8 fibers wrapped around each other during self-assembly and EFK8 fibers wrapped around SWNTs. In this second structure, EFK8 chains should be oriented with their hydrophobic sides oriented toward the SWNTs and their hydrophilic sides toward the water, thereby enabling the dispersion of the nanotubes in aqueous media. We have also demonstrated the formation of hybrid EFK8–SWNT hydrogels that have potentially superior physical and mechanical properties over those of other hydrogels and opens up new applications for this type of material. To the best of our knowledge, this is the first work reporting the formation of a composite hydrogel made of an ionic-complementary peptide and carbon nanotubes.  相似文献   

16.
The effect of the incorporation of single‐walled carbon nanotubes (SWNTs) onto a diglycidyl ether of bisphenol A‐based (DGEBA) epoxy resin cure reaction was investigated by thermal analysis and Raman spectroscopy. The results of the investigation show that SWNTs act as a strong catalyst. A shift of the exothermic reaction peak to lower temperatures is, in fact, observed in the presence of SWNTs. Moreover, these effects are already noticeable at the lowest SWNT content investigated (5%) with slight further effects at higher concentrations, suggesting a saturation of the catalyzing action at the higher concentrations studied. The curves obtained under isothermal conditions confirm the results obtained in nonisothermal tests showing that the cure reaction takes less time with respect to the neat epoxy. The thermal degradation of cured DGEBA and DGEBA/SWNT composites was examined by thermogravimetry, showing a faster thermal degradation for DGEBA–SWNT composites. Raman spectroscopy was successfully applied to demonstrate that the observed changes in the cure reaction of the composites lead to a different residual strain on the SWNT bundles following a different intercalation of the epoxy matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 452–458, 2003  相似文献   

17.
Photophysics of individual single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) are cylindrical graphitic molecules that have remained at the forefront of nanomaterials research since 1991, largely due to their exceptional and unusual mechanical, electrical, and optical properties. The motivation for understanding how nanotubes interact with light (i.e., SWNT photophysics) is both fundamental and applied. Individual nanotubes may someday be used as superior near-infrared fluorophores, biological tags and sensors, and components for ultrahigh-speed optical communications systems. Establishing an understanding of basic nanotube photophysics is intrinsically significant and should enable the rapid development of such innovations. Unlike conventional molecules, carbon nanotubes are synthesized as heterogeneous samples, composed of molecules with different diameters, chiralities, and lengths. Because a nanotube can be either metallic or semiconducting depending on its particular molecular structure, SWNT samples are also mixtures of conductors and semiconductors. Early progress in understanding the optical characteristics of SWNTs was limited because nanotubes aggregate when synthesized, causing a mixing of the energy states of different nanotube structures. Recently, significant improvements in sample preparation have made it possible to isolate individual nanotubes, enabling many advances in characterizing their optical properties. In this Account, single-molecule confocal microscopy and spectroscopy were implemented to study the fluorescence from individual nanotubes. Single-molecule measurements naturally circumvent the difficulties associated with SWNT sample inhomogeneities. Intrinsic SWNT photoluminescence has a simple narrow Lorentzian line shape and a polarization dependence, as expected for a one-dimensional system. Although the local environment heavily influences the optical transition wavelength and intensity, single nanotubes are exceptionally photostable. In fact, they have the unique characteristic that their single molecule fluorescence intensity remains constant over time; SWNTs do not "blink" or photobleach under ambient conditions. In addition, transient absorption spectroscopy was used to examine the relaxation dynamics of photoexcited nanotubes and to elucidate the nature of the SWNT excited state. For metallic SWNTs, very fast initial recovery times (300-500 fs) corresponded to excited-state relaxation. For semiconducting SWNTs, an additional slower decay component was observed (50-100 ps) that corresponded to electron-hole recombination. As the excitation intensity was increased, multiple electron-hole pairs were generated in the SWNT; however, these e-h pairs annihilated each other completely in under 3 ps. Studying the dynamics of this annihilation process revealed the lifetimes for one, two, and three e-h pairs, which further confirmed that the photoexcitation of SWNTs produces not free electrons but rather one-dimensional bound electron-hole pairs (i.e., excitons). In summary, nanotube photophysics is a rapidly developing area of nanomaterials research. Individual SWNTs exhibit robust and unexpectedly unwavering single-molecule fluorescence in the near-infrared, show fast relaxation dynamics, and generate excitons as their optical excited states. These fundamental discoveries should enable the development of novel devices based on the impressive photophysical properties of carbon nanotubes, especially in areas like biological imaging. Many facets of nanotube photophysics still need to be better understood, but SWNTs have already proven to be an excellent starting material for future nanophotonics applications.  相似文献   

18.
The effect of the incorporation of single‐walled carbon nanotubes (SWNTs) on the PP crystallization kinetics is investigated by thermal analysis, microscopy and Raman spectroscopy. The results of the investigation show that SWNT acts as a strong nucleation agent. A marked decrease of the half‐time of PP crystallization as well as a sensible increase of the overall crystallization rate is observed in the presence of SWNTs. Moreover, these effects are already noticeable at the lowest SWNT content in the composite with slow further effects at higher concentrations, suggesting a saturation of the nucleating action at the higher concentrations studied. The Avrami model can represent the crystallization kinetics of PP in the composite. The kinetic curves obtained under non‐isothermal conditions confirm the results obtained in isothermal tests and demonstrate the nucleation ability of SWNTs on the PP crystallization. Raman spectroscopy and scanning electron microscopy (SEM) are successfully applied to demonstrate that in the composite films, the changes in the crystallization kinetics can be explained in terms of the changes of the distance between nanotubes in bundles following a different intercalation of the polymer matrix.  相似文献   

19.
T.E. Chang  A. Kisliuk  R. Pyrz 《Polymer》2005,46(2):439-444
We analyzed mechanical properties and structure of polypropylene fibers with different concentrations of single-wall carbon nanotubes (SWNTs) and draw down ratios (DDR). Tensile tests show a three times increase in the Young's modulus with addition of only 1 wt% SWNT, and much diminished increase of modulus with further increase in SWNT concentration. Microscopic study of the mechanism of reinforcement by SWNT included Raman spectroscopy and wide-angle X-ray diffraction (WAXD). The results show linear transfer of the applied stress from the polymer matrix to SWNT. Analysis of WAXD data demonstrates formation of a β-crystal phase in polypropylene matrix under the strain.  相似文献   

20.
This paper is devoted to correlate the microstructure and room temperature mechanical properties of single-wall carbon nanotube (SWNT) reinforced 3 mol% yttria stabilized tetragonal zirconia with high SWNT content (2.5, 5 and 10 vol%). Fully dense composites were prepared by using a combination of aqueous colloidal powder processing and Spark Plasma Sintering. SWNTs were located at the ceramic grain boundaries and they were not damaged during the sintering process. The weak interfacial bonding between SWNTs and ceramic grains together with the detachment of SWNTs within thick bundles have been pointed out as responsible for the decrease of hardness and fracture toughness of the composites in comparison with the monolithic 3YTZP ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号