共查询到20条相似文献,搜索用时 93 毫秒
1.
The available adsorption working pairs applied to adsorption refrigeration system, which utilize activated carbon as adsorbent, are mainly activated carbon-methanol, activated carbon-ammonia, and composite adsorbent-ammonia. The adsorption properties and refrigeration application of these three types of adsorption working pairs are investigated. For the physical adsorbents, consolidated activated carbon showed best heat transfer performance, and activated carbon-methanol showed the best adsorption property because of the large refrigerant amount that can be adsorbed. For the composite adsorbents, the consolidated composite adsorbent with mass ratio of 4:1 between CaCl2 and activated carbon, showed the highest cooling density when compared to the granular composite adsorbent and to the merely chemical adsorbent. The physical adsorption icemaker that employs consolidated activated carbon-methanol as working pair had the optimum coefficient of refrigeration performance (COP), volume cooling power density (SCPv) and specific cooling power per kilogram adsorbent (SCP) of 0.125, 9.25 kW/m3 and 32.6 W/kg, respectively. The composite adsorption system that employs the consolidated composite adsorbent had a maximum COP, SCPv and SCP of 0.35, 52.68 kW/m3 and 493.2 W/kg, respectively, for ice making mode. These results are improved by 1.8, 4.7 and 14 times, respectively, when compared to the results of the physical adsorption icemaker. 相似文献
2.
The role of adsorbent pore size distribution in multicomponent adsorption on activated carbon 总被引:1,自引:0,他引:1
The impact of adsorbent pore size distribution (PSD) on adsorption mechanism for the multi solute system was evaluated in this study. Anoxic and oxic adsorption equilibrium for the single solute (phenol), binary solute (phenol/2-methylphenol) and ternary solute (phenol/2-methylphenol/2-ethylphenol) systems on one granular activated carbon (GAC) F400 and two types of activated carbon fibers (ACFs), namely, ACC-10 and ACC-15, were determined. F400 has a wide PSD, while ACC-10 and ACC-15 have narrow PSD and their critical pore diameters are 8.0 Å and 12.8 Å, respectively. In single solute adsorption, the increase of adsorptive capacity under oxic conditions as compared to anoxic ones was related to the PSD of the adsorbent. Binary solute adsorption on ACC-10 and ternary solute adsorption on ACC-15 indicated no impact of the presence of molecular oxygen on the adsorptive capacity and the adsorption isotherms were well predicted by the ideal adsorbed solution theory (IAST). Significant differences between oxic and anoxic isotherms were noticed for other multicomponent adsorption systems. The narrow PSD of ACFs was effective in hampering the oligomerization of phenolic compounds under oxic conditions. Such a phenomenon will provide accurate predictions of fixed bed adsorbers in water treatment systems. 相似文献
3.
The purpose of this paper is to present the results of performance analysis of a heat driven continuous vapor adsorption refrigerator with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC-134a) as the refrigerant. A set of four adsorption cells takes on the role of the mechanical compressor in the conventional vapor compression refrigeration (VCR) system. Three specimens of activated charcoal under various packing densities were investigated. A parametric analysis was carried out with several evaporating, condensing/adsorbing and desorbing temperatures which are typical operating conditions catered to by HFC-134a. A new integrated relative performance evaluation scheme is proposed. It uses the maximum cycle uptake difference as a factor against which the coefficient of performance (COP) and exergetic efficiency are evaluated. It is shown that there is an optimal set of operating conditions wherein the exergetic efficiency is the maximum. A major part of the thermal energy input is for sensible heating of the compressor body. 相似文献
4.
Novel morphologies of activated carbons such as monolith, beads and fiber cloth can effectively capture organic vapors from industrial sources. These adsorbent materials are also unique because they can undergo direct electrothermal regeneration to recover the adsorbed organic vapors for potential re-use. This investigation compares and contrasts the properties of these adsorbents when using electrothermal-swing adsorption. The adsorption systems consisted of an organic vapor generation system, an electrothermal-swing adsorption vessel, a gas detection unit, and a data acquisition and control system. The activated carbon monolith (ACM) had the lowest pressure drop, highest permeability, highest electrical resistivity and lowest cost as compared to the activated carbon beads (ACB) and the activated carbon fiber cloth (ACFC). ACB had the largest throughput ratio and lowest length of unused bed as compared to the other adsorbents. However, ACFC had the largest adsorption capacity for toluene when compared to ACM and ACB. ACFC was also faster to regenerate and had a larger concentration factor than ACM and ACB. These results describe relevant physical, electrical, adsorption and cost properties for specific morphologies of the adsorbents to more effectively capture and recover organic vapors from gas streams. 相似文献
5.
6.
7.
Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter 总被引:2,自引:0,他引:2
Activated carbon cloths are recent adsorbents whose adsorption properties are well known for monocomponent solutions of organics or metal ions. However, to treat wastewaters with these materials, their performance has to be determined in multicomponent solution. This work studies adsorption competition between metal ions (Cu2+, Pb2+) and organic matter (benzoic acid). The first part investigates adsorption equilibrium of monocomponent metal ions solutions and shows the dependence of adsorption capacities on adsorbent porosity and metal ions chemical properties (molecular weight, ionic radius and electronegativity). The influence of pH is also demonstrated. The second part focuses on adsorption competition: (1) between both metal ions (a decrease of adsorption capacities is observed, whose value is related to adsorption kinetics of metal ions); (2) between metal ions and organic matter, in solution or adsorbed onto the activated carbon cloth (a strong influence of pH is shown: when benzoic acid is under benzoate form, in both cases adsorption is increased due to the formation of ligands between adsorbed benzoate ions and metals). 相似文献
8.
9.
A pulse mass analyzer was used to study the vapor phase adsorption of organic compounds on single-walled carbon nanotubes and chemically modified/oxidized SWCNTs. The change in mass of a packed bed of adsorbent held at 200 °C was observed following the injection of a pulse of an organic compound from the series: ethanol, iso-propanol, cyclohexane, cyclohexene, benzene, or n-hexane. The relative strength of adsorption was obtained by the mass increase resulting from injection of the pulse and by the time required for desorption. This time was broken into the transit time to reach the end of the bed and the half-time for return from peak to baseline. Hexane was the most strongly held compound of the organic sequence. Oxidative purification of a raw nanotube sample produced a less hydrophobic surface. The effect of the purification was reversed by thermolysis at 700 °C, which removed oxygenated functional groups and increased the affinity for hydrocarbons. The amorphous carbon associated with the raw nanotube sample is a strong adsorbent for hydrocarbons. By comparison, an activated carbon had a greater affinity for hydrocarbons than any of the nanotube samples. 相似文献
10.
11.
Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution 总被引:1,自引:0,他引:1
The effect of zinc oxide loading to granular activated carbon on Pb(II) adsorption from aqueous solution was studied in comparison with zinc oxide particles and oxidized activated carbon. Cu(II), Cd(II) and nitrobenzene were used as reference adsorbates to investigate the adsorption. The BET surface area and point of zero charge (pHPZC) in the aqueous solution were measured for the adsorbents. The adsorption isotherms were examined to characterize the adsorption of heavy metals and organic molecules. The heavy metal adsorption was improved by both the zinc oxide loading and the oxidation of activated carbon. In contrast, the adsorption of nitrobenzene was considerably reduced by the oxidation, and slightly decreased by the zinc oxide loading. The zinc oxide loading to the activated carbon was found to be effectively used for the Pb(II) adsorption whereas only a part of surface functional groups was used for the zinc oxide particles and the oxidized activated carbon. From the experimental results, the surface functional groups responsible for the Pb(II) adsorption on the zinc oxide loaded activated carbon were considered to be hydroxyl groups that formed on the oxide, while those on the oxidized activated carbon were considered to be carboxylic groups. 相似文献
12.
Hydrogen adsorption in different carbon nanostructures 总被引:1,自引:0,他引:1
Hydrogen adsorption in different carbonaceous materials with optimized structure was investigated at room temperature and 77 K. Activated carbon, amorphous carbon nanotubes, SWCNTs and porous carbon samples all show the same adsorption properties. The fast kinetics and complete reversibility of the process indicate that the interaction between hydrogen molecules and the carbon nanostructure is due to physisorption. At 77 K the adsorption isotherm of all samples can be explained with the Langmuir model, while at room temperature the storage capacity is a linear function of the pressure. The surface area and pore size of the carbon materials were characterized by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. A linear relation between hydrogen uptake and specific surface area (SSA) is obtained for all samples independent of the nature of the carbon material. The best material with a SSA of 2560 m2/g shows a storage capacity of 4.5 wt% at 77 K. 相似文献
13.
Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed 总被引:2,自引:0,他引:2
A new model is proposed to describe the removal of volatile organic compounds (VOC) from a gas stream passing through a bed packed with activated carbon fibers (ACFs). Toluene was used as the test compound. Both pore diffusion and surface diffusion are considered in the model. The equilibrium behavior is shown to fit the Dubinin–Radushkevich isotherm with the values of parameters K and W0 of 1.101 × 10−9 and 57.73 kg/m3, respectively. The experimental results show that this model can predict VOC breakthrough curve very well. 相似文献
14.
Adsorption equilibria of light alkanes and alkenes on Kureha activated carbon were investigated using a volumetric method. Single-component adsorption isotherms are reported at pressures up to 120 kPa and at temperatures in the range from 194 to 338 K for ethane and ethene and from 273 to 358 K for propane and propene. The Tóth model appropriately describes the equilibrium data over the whole range of conditions. The saturation capacity for the alkene extracted by the Tóth model is higher than for the corresponding alkane, attributed to the higher packing efficiency of the alkene molecules inside the micropores. An interesting reversal in alkane/alkene adsorption selectivity with pressure is observed: at low pressures the selectivity towards the alkanes is driven by energetic effects while at high pressures the selectivity is towards the alkenes due to entropic effects. 相似文献
15.
Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth 总被引:1,自引:0,他引:1
The adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth was studied as a function of their concentrations and solution pH. For that purpose, pertinent adsorption isotherm data was collected at different pH values. The amount of adsorbed zinc and cadmium ions increases while the amount of adsorbed mercury remains constant with an increase in the equilibrium pH of the solution. The adsorption mechanisms of metal ions on activated carbon cloth are discussed. Under the conditions investigated, these primarily involve adsorption of monovalent cations (Zn and Cd) or precipitation of metal hydroxides (Cd and Hg) on the activated carbon cloth tested. 相似文献
16.
17.
Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde 总被引:3,自引:0,他引:3
The tailoring of pore surface chemistry of activated carbon fibers is shown to be an effective method for improving the adsorption efficiency of various volatile chemical compounds (VOCs). An oxidation treatment with air resulted in a significant increase in the adsorption capacities and breakthrough time for Rayon-based activated carbon fibers (ACFs) in removal of formaldehyde. The porous structure parameters of Rayon-based ACFs were determined with standard nitrogen adsorption analysis. The pore surface chemistry of samples under study was analyzed by Fourier Transform Infrared spectra (FTIR). Thus to some extent, the relationship between the adsorption properties, porous structure and pore surface chemistry was revealed. 相似文献
18.
Zafer Demircan Evren Tekol Deniz Tanyolaç Ahmet R. Özdural 《Chemical Engineering Communications》2013,200(5-8):831-842
In this study, a new type of magnetic particle was prepared in a uniform and spherical form for the range of 750 w m <D p <1000 w m from commercially available polyvinylbutyral (Mowital B30H, Hoechst), magnetite, and activated carbon using solvent evaporation technique. Magnetite (D p <5 w m) was successfully embedded in the adsorbent particles. The surface and cross-sectional views of p -magnetic particles were investigated with a Scanning Electron Microscope (SEM). The intensity of magnetization was measured with a vibrating-sample magnetometer. The adsorption studies of phenol and chromium (Cr(VI)) onto the adsorbent particles were carried out batch-wise. The effects of activated carbon and magnetite percentages on the adsorption capacity were investigated, and different initial adsorbate concentration and pH values were examined. Desorption experiments were carried out with different concentrations of NaOH, and it was determined that approximately 95% of adsorbed ions were desorbed. It was concluded that the para-magnetic polyvinylbutyral particles containing activated carbon and magnetite could effectively be used in the adsorption of organic and inorganic pollutants. 相似文献
19.
The objective of this work was to increase the understanding of the adsorption competition between an odour compound, 2-methylisoborneol, and natural organic material (NOM). Part I describes the characterisation of six commercially available activated carbons, undertaken using nitrogen gas adsorption, surface titrations, and Fourier transform infrared spectroscopy. The natural organic material (NOM) from one raw water and four fractions obtained from an isolation and fractionation procedure undertaken on the same raw water, were characterised using 13C NMR, high-performance size exclusion chromatography, UV-visible absorbance and elemental analysis. Simultaneous adsorption of NOM and MIB indicated that the adsorption of the NOM was largely dependent on the pore volume distribution of the activated carbons, and less influenced by the variation in surface chemistry. Larger NOM molecules showed greater relative rates of adsorption where the access to the internal structure of the carbon was restricted by size exclusion, due to the shorter diffusion distances to adsorption sites travelled by the larger molecules. As the concentration of MIB was extremely low compared with that of the NOM in these experiments, no effect of MIB on NOM adsorption was seen. Part II reports the significant effect of the NOM solutions on the adsorption of MIB. 相似文献
20.
Comparative study of methylene blue dye adsorption onto activated carbon,graphene oxide,and carbon nanotubes 总被引:1,自引:0,他引:1
Yanhui Li Qiuju Du Tonghao Liu Xianjia Peng Junjie Wang Jiankun Sun Yonghao Wang Shaoling Wu Zonghua Wang Yanzhi Xia Linhua Xia 《Chemical Engineering Research and Design》2013
Three different carbonaceous materials, activated carbon, graphene oxide, and multi-walled carbon nanotubes, were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The adsorbents were characterized by N2 adsorption/desorption isotherms, infrared spectroscopy, particle size, and zeta potential measurements. Batch adsorption experiments were carried out to study the effect of solution pH and contact time on dye adsorption properties. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Langmuir isotherm model. The remarkably strong adsorption capacity normalized by the BET surface area of graphene oxide and carbon nanotubes can be attributed to π–π electron donor acceptor interaction and electrostatic attraction. 相似文献