首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, the interfacial, thermal, and ablative properties of phenolic composites reinforced with spun yarn type carbon fabrics (spun C/P composite) and filament yarn type carbon fabrics (filament C/P composite) heat-treated at 1100 °C have been extensively compared. The interlaminar shear strength, crack growth rate, and fracture surface were studied to evaluate the interfacial characteristics of the composites using short-beam shear test, double cantilever beam test, and scanning electron microscopy, respectively. The thermal conductivity and the coefficient of thermal expansion were also measured in the longitudinal and transverse directions, respectively. To explore the ablative characteristics of the composites in terms of insulation index, erosion rate, and microscopic pattern of ablation, an arc plasma torch was used. The interfacial properties of the spun C/P composite are significantly greater than those of the filament C/P composite, with qualitative support of fracture surface observations. It has been investigated that the presence of protruded fibers in the phenolic matrix of the spun C/P composite may play an important role in enhancing the properties due to a fiber bridging effect. The longitudinal thermal conductivity of the spun C/P composite is about 7% lower than that of the filament C/P counterpart. It has been found from the ablation test using arc plasma torch flame that the erosion rate is 14% higher than that of the filament C/P counterpart. Consequently, all the experimental results suggest that use of spun yarn type carbon fabrics heat-treated at low carbonization temperature as reinforcement in a phenolic composite may significantly contribute to improving the interfacial, thermal, and ablative properties of C/P composites.  相似文献   

2.
《Ceramics International》2022,48(8):10770-10778
Pitch-based carbon fibers were assembled in horizontal and thickness directions of SiC/SiC composites to form three-dimensional heat conduction networks. The effects of heat conduction networks on microstructures, mechanics, and thermal conductivities were investigated. The results revealed the benefit of introducing heat conduction networks in the densification of composites. The maximum bending strength and interlaminar shear strength of the modified composites reached 568.67 MPa and 68.48 MPa, respectively. These values were equivalent to 18.6% and 69.4% increase compared to those of composites without channels. However, channels in thickness direction destroyed the continuity of fibers and matrix, creating numerous defects. As the volume fraction of heat conduction channels rose, the pinning strengthening effect of channels and influence of defects competed with each other to result in first enhanced mechanical properties followed by a decline. The in-plane thermal conductivity was found anisotropic with a maximum value reaching 86.20 W/(m·K) after introducing pitch-based carbon unidirectional tapes. The thermal conductivity in thickness direction increased with volume fraction of pitch-based carbon fibers and reached 19.13 W/(m·K) at 3.87 vol% pitch-based carbon fibers in the thickness direction. This value was 90.75% higher than that of composites without channels.  相似文献   

3.
MgO-SiC-C复合材料力学性能和抗热震性能研究   总被引:1,自引:4,他引:1  
李君  王俭  钟香崇 《耐火材料》2000,34(2):86-89
对MgO-SiC-C复合材料的力学性能和抗热震性能的研究结果表明SiC含量增加,材料的强度和抗热震性能提高。升温过程中结合剂结构的变化对MgO-SiC-C复合材料强度变化起重要作用。  相似文献   

4.
Five different carbon/carbon composites (C/C) have been prepared and their thermophysical properties studied. These were three needled carbon felts impregnated with pyrocarbons (PyC) of different microstructures, chopped fibers/resin carbon + PyC, and carbon cloth/PyC. The results show that the X-Y direction thermal expansion coefficient (CTE) is negative in the range 0-100 °C with values ranging from −0.29 to −0.85 × 10−6/K. In the range 0-900 °C, their CTE is also very low, and the CTE vs. T curves have almost the same slope. In the same temperature range composites prepared using chopped fibers show the smallest CTE values and those using the felts show the highest. The microstructure of the PyC has no obvious effect on the CTE for composites with the same preform architecture. Their expansion is mainly caused by atomic vibration, pore shrinkage and volatilization of water. However, the PyC structure has a large effect on thermal conductivity (TC) with rough laminar PyC giving the highest value and isotropic PyC giving the lowest. All five composites have a high TC, and values in the X-Y direction (25.6-174 W/m K) are much larger than in the Z direction (3.5-50 W/m K). Heat transmission in these composites is by phonon interaction and is related to the preform and PyC structures.  相似文献   

5.
《Ceramics International》2020,46(10):16142-16150
Hafnium carbide nanowires (HfCnws) were in-situ grown in carbon/carbon (C/C) composites, and subsquently the preforms were densified by isothermal chemical vapor infiltration to obtain HfCnws modified carbon/carbon (HfCnws-C/C) composites. Morphology and microstructure of HfCnws were examined, and the effect of HfCnws on the mechanical property and ablation resistance of C/C composites were also investigated. Results show that introducing HfCnws refined the grain size of pyrolytic carbon (PyC). The out-of-plane compression, interlaminar shear and flexual strength of HfCnws-C/C composites increased by 120.80%, 45.60% and 94.65%, respectively compared with pure C/C, and the HfCnws-C/C shows good ablation resistance under oxy-acetylene flame ablation.  相似文献   

6.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites.  相似文献   

7.
Jong Kyoo Park  Tae Jin Kang 《Carbon》2002,40(12):2125-2134
The thermal and ablative properties of phenol formaldehyde resin (PF) composites reinforced with carbon fibers heat-treated at low temperature have been investigated. Low temperature carbon fibers (LTCF) were obtained by a continuous carbonization process from stabilized PAN fibers at 1100 °C. The properties of LTCF reinforced PF (LTCF-PF) composites are compared with those of high temperature carbon fiber (HTCF) reinforced PF (HTCF-PF) composites. The thermal conductivity of the LTCF-PF composite is lower than that of HTCF-PF composite by about 35 and 10% along the directions parallel and perpendicular to the laminar plane, respectively. It was found from the ablation test using an arc plasma touch flame that the erosion rate is higher by about 30% in comparison with HTCF-PF composite. The result suggests that use of LTCFs as reinforcement in a composite may improve the thermal insulation of the composite but decrease the ablative resistance.  相似文献   

8.
Erik T. Thostenson 《Carbon》2006,44(14):3022-3029
The novel properties of carbon nanotubes have generated scientific and technical interest in the development of nanotube-reinforced polymer composites. In order to utilize nanotubes in multi-functional material systems it is crucial to develop processing techniques that are amenable to scale-up for high volume, high rate production. In this research we investigate a scalable calendering approach for achieving dispersion of CVD-grown multi-walled carbon nanotubes through intense shear mixing. Electron microscopy was utilized to study the micro and nanoscale structure evolution during the manufacturing process and optimize the processing conditions for producing highly-dispersed nanocomposites. After processing protocols were established, nanotube/epoxy composites were processed with varying reinforcement fractions and the fracture toughness and electrical/thermal transport properties were evaluated. The as-processed nanocomposites exhibited significantly enhanced fracture toughness at low nanotube concentrations. The high aspect ratios of the carbon nanotubes in the as-processed composites enabled the formation of a conductive percolating network at concentrations below 0.1% by weight. The thermal conductivity increased linearly with nanotube concentration to a maximum increase of 60% at 5 wt.% carbon nanotubes.  相似文献   

9.
Tzeng  Lin 《Carbon》1999,37(12):2011
Effect of interfacial carbon layers on the mechanical properties and fracture behavior of two-dimensional carbon fiber fabrics reinforced carbon matrix composites were investigated. Phenolic resin reinforced with two-dimensional plain woven carbon fiber fabrics was used as starting materials for carbon/carbon composites and was prepared using vacuum bag hot pressing technique. In order to study the effect of interfacial bonding, a carbon layer was applied to the carbon fabrics in advance. The carbon layers were prepared using petroleum pitch with different concentrations as precursors. The experimental results indicate that the carbon/carbon composites with interfacial carbon layers possess higher fracture energy than that without carbon layers after carbonization at 1000°C. For a pitch concentration of 0.15 g/ml, the carbon/carbon composites have both higher flexural strength and fracture energy than composites without carbon layers. Both flexural strength and fracture energy increased for composites with and without carbon layers after graphitization. The amount of increase in fracture energy was more significant for composites with interfacial carbon layers. Results indicate that a suitable pitch concentration should be used in order to tailor the mechanical behavior of carbon/carbon composites with interfacial carbon layers.  相似文献   

10.
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens—(i) carbon fibre epoxy matrix composite (CF/Epoxy), (ii) carbon fibre epoxy matrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxy matrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs—were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 13% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.  相似文献   

11.
《Ceramics International》2015,41(7):8643-8649
Graphene nanosheet (GNS)/aluminum nitride (AlN) composites were prepared by hot-pressing and effects of GNSs on their microstructural, mechanical, thermal, and electrical properties were investigated. At 1.49 vol% GNSs content, the fracture toughness (5.09 MPa m1/2) and flexural strength (441 MPa) of the composite were significantly increased by 30.17% and 17.28%, respectively, compared to monolithic AlN. The electrical conductivity of the composites was effectively enhanced with the addition of GNSs, and showed a typical percolation behavior with a low percolation threshold of 2.50±0.4 vol%. The thermal conductivity of the composites decreased with the addition of GNSs.  相似文献   

12.
《Ceramics International》2022,48(18):25673-25680
The trial-and-error method used in ceramics research has certain limitations such as the high blindness of material component design. Moreover, calculations of the toughness of ceramics using the extended finite element method, which is the most broadly applied technique, are complicated. To overcome these issues, in this study, multilayer graphene (MLG)/Si3N4 whisker (Si3N4w)-reinforced Si3N4 ceramics (MWSCs) were used as the model material, and the modeling of MWSCs was conducted using Voronoi tessellation. Additionally, a more concise novel approach was applied for the prediction of the fracture toughness of MWSCs. Furthermore, the optimal MLG and Si3N4w contents were predicted, and then they were verified by fabricating MWSCs using spark plasma sintering (SPS). Simulation results indicated that the optimum MLG and Si3N4w contents to enable the toughness and hardness to reach the maximum values (9.87 MPa·m1/2 and 23.19 GPa) were 1 wt% and 3 wt%, which were consistent with the experimental results. Consequently, the effectiveness of the proposed method was verified. Moreover, the experimental values of the maximum fracture toughness and hardness were 11.04 MPa·m1/2 and 20.29 GPa, which were 47.20% and 12.10% higher than those of Si3N4 ceramics reinforced with 1 wt% MLG, respectively. The synergistic toughening effects of MLG and Si3N4w were significantly reflected. The load-bearing effect, bridging, and crack deflection induced by MLG and Si3N4w were the key reasons for the improvement in the mechanical properties of MWSCs.  相似文献   

13.
Carbon/carbon (C/C) composites with addition of hafnium carbide (HfC) were prepared by immersing the carbon felt in a hafnium oxychloride aqueous solution, followed by densification and graphitization. Mechanical properties, coefficients of thermal expansion (CTE), and thermal conductivity of the composites were investigated. Results show that mechanical properties of the composites decrease dramatically when the HfC content is greater than 6.5 wt%. CTE of the composites increases with the increase of HfC contents. The composites with addition of 6.5 wt% HfC show the highest thermal conductivity. The high thermal conductivity results from the thermal motion of CO in the gaps and pores, which can improve phonon–defect interaction of the C/C composites. Thermal conductivities of the composites decrease when the HfC content is greater than 6.5 wt%, which is due to formation of a large number of cracks in the composites. Cracks increase the phonon scattering and hence restrain heat transport, which results in the decrease of thermal conductivity of the composites.  相似文献   

14.
The superlative mechanical properties of carbon nanotubes make them the filler material of choice for composite reinforcement. In this paper we review the progress to date in the field of mechanical reinforcement of polymers using nanotubes. Initially, the basics of fibre reinforced composites are introduced and the prerequisites for successful reinforcement discussed. The effectiveness of different processing methods is compared and the state of the art demonstrated. In addition we discuss the levels of reinforcement that have actually been achieved. While the focus will be on enhancement of Young’s modulus we will also discuss enhancement of strength and toughness. Finally we compare and tabulate these results. This leads to a discussion of the most promising processing methods for mechanical reinforcement and the outlook for the future.  相似文献   

15.
Sufang Tang  Wenchuan Liu  Ke Yang 《Carbon》2006,44(14):2877-2882
In order to improve the mechanical and ablation properties of 2D-carbon/carbon composites, a SiC filler was added to a 2D-preform before isothermal chemical vapor infiltration densification by using a powder infiltration technique. Backscattered electron images showed that the SiC filler was mainly concentrated between the fiber bundles and between the layers. The tensile and flexural strengths of the composites were improved by the addition of the SiC filler because of the increase of interfacial surface areas between the bundles and between the layers, the less residual open porosity, and also the strong bonding between the SiC particles and the pyrocarbon matrix. The composites with filler experienced a 15.2% lower thickness erosion rate and a 51.7% lower mass erosion rate, compared to those C/C without filler. This was attributed to the low oxygen permeability of the SiO2 shielding the exterior inter-bundle pores as well as to a thermal barrier effect.  相似文献   

16.
Thermal fatigue behavior of two-dimensional carbon fiber reinforced SiC matrix composites fabricated by chemical vapor infiltration technique was investigated using an on-line quench method in controlled environments which simulated an aero-engine gas. A system of damage information acquisition (SDIA) was developed to study changes in electrical resistance of the C/SiC composites during their damage in dynamic testing. Damage to composites was assessed by the ultimate tensile strength (UTS) and SEM characterization. The results showed that: (1) under different atmosphere, the 2D-C/SiC composites subjected to thermal cycling behaved very differently and the most sensitive atmosphere was the wet oxygen; (2) external load could accelerate the degradation of the composites and changed the oxidation regimes of fibers; (3) the electrical resistance of the specimen could be detected on-line, stored in real time and analyzed reliably by the newly-developed SDIA; (4) 2D-C/SiC composites had an excellent thermal fatigue resistance in different environments.  相似文献   

17.
对含石墨的炭/陶复合材料优良的抗热震性能进行了讨论。这种性质与石墨的导热系数大、断裂功高、热膨胀和弹性模量小密切相关。  相似文献   

18.
In order to apply carbon/carbon composites (C/Cs) to various hot structures, secondary bonding techniques effective at elevated temperatures are frequently required. In the present study, carbon bonding between lamination type C/Cs was formed by the carbonation of polymer adhesive, and the strength of the bonding was evaluated at temperatures up to 2273 K in a vacuum using the double-notched shear method. The results revealed that bonding strength increased with increasing temperature and became higher than the inter-laminar shear strength of the substrate C/C when the bonding layer was thin. The enhancement of carbon bonding strength with increasing temperature was shown to be caused mainly by the evaporation of absorbed gases, probably water, up to temperatures of 1800 K with a slight additional contribution of thermal residual stress. It was also shown that heat treatment at higher temperatures made the bonding stronger.  相似文献   

19.
Unidirectional carbon/carbon composites were developed using high-pressure impregnation/carbonization technique with PAN and pitch based carbon fibers of varying microstructure as reinforcements and different types of pitches as matrix precursors. The composites have been given final heat treatment to 2500-2700 °C. Microstructure of these composites has been evaluated using scanning electron microscope and polarized light optical microscope. Thermophysical properties, i.e., thermal conductivity, coefficient of thermal expansion and specific heat have been evaluated. It is found that the type of fibers and matrix present in the composites influences the absorption (specific heat) and transmission (conductivity) of thermal energy. The temperature dependence of thermal diffusion, specific heat, thermal conductivity and coefficient of thermal expansion has been studied and correlated with microstructure of carbon/carbon composites.  相似文献   

20.
Bidirectional carbon/carbon composites were developed using high-pressure impregnation/carbonization technique with PAN based carbon fabric as reinforcement and coal tar and synthetic pitches as matrix precursors. Microstructure of these composites has been evaluated using scanning electron microscope and polarized light optical microscope. Thermophysical properties i.e. thermal conductivity and specific heat have been evaluated both at room temperature and between 40 and 300 °C. The temperature dependence of thermal diffusion, specific heat and thermal conductivity has been studied and correlated with microstructure of carbon/carbon composites. It is found that the specific heat of carbon/carbon composites shows increase with temperature with an inverse slope in the temperature range of 150-200 °C. Accordingly, though the thermal conductivity decrease with temperature due to increased phonon interactions, it shows reversible action between 150 and 200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号