首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conducting and transparent aluminum doped zinc oxide (ZnO:Al) thin films have been deposited on polyimide substrate by r.f. magnetron sputtering at room temperature. The influence of sputter pressure and thickness on the structural, electrical, and optical properties of ZnO:Al films deposited on polyimide substrate is reported. The crystallinity and degree of orientation was increased by decreasing the sputter pressure. For higher sputtering pressures an increase on the resistivity was observed due to a decrease on the mobility and the carrier concentration. As the film thickness was increased, the crystallite sizes were increased, but the average transmittance in the wavelength range of the visible spectrum was decreased. The electrical performances of the ZnO:Al films deposited on glass substrates are slightly worse than the ones of the films deposited on polyimide substrates with same thickness. The lowest resistivity of 8.6?×?10?4 Ω cm can be obtained for films deposited on glass substrate with the thickness of 800 nm.  相似文献   

2.
This study examined the effect of the hydrogen ratio on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt% ZnO, 2 wt% Al2O3). Various AZO films on glass were prepared by changing the H2/(Ar?+?H2) ratio at room temperature. The AZO/H films showed a lower resistivity and a higher carrier concentration and mobility than the AZO films. However, the resistivity and mobility of the AZO/H films increased and decreased with increasing H2 flow ratio, respectively. As a result, the AZO/H films grown with 2% H2 addition showed excellent electrical properties with a resistivity of 4.98?×?104 Ωcm. The UV-measurements showed that the optical transmission of the AZO/H films was >85% in the visible range with a wide optical band gap. In addition, the effect of H2 flow ratio on the structure and composition of hydrogenated AZO thin films have also been studied.  相似文献   

3.
ZnO films with varying fluorine content were prepared on Corning glass by radio frequency magnetron sputtering of ZnO target containing ZnF2 at room temperature, and the compositional, electrical, optical, and structural properties of the as-grown films together with the vacuum-annealed films were investigated. The fluorine content in the fluorine doped ZnO (FZO) films increased almost linearly with increasing ZnF2 content in sputter target, and the highest atomic concentration was 7.3%. Vacuum-annealing caused a slight reduction of fluorine content in the films. The resistivity of the as-grown FZO films deposited showed a typical valley-like behavior with respect to the fluorine content in film, i.e. having minimum resistivity at intermediate fluorine content. Despite high fluorine content in the FZO films, the carrier concentration remained below 1.2?×?1020 cm?3, leading to very low doping efficiency level. Upon vacuum-annealing, the resistivity of FZO films decreased substantially due to increase in both the carrier concentration and the Hall mobility. From the structural analysis made by X-ray diffraction study, it was shown that addition of small amount of fluorine enhanced the crystallinity of FZO films with (002) preferred orientation, and that large amount of fluorine addition yielded disruption of preferred orientation. It was also shown that doping of fluorine rendered a beneficial effect in reducing the absorption loss of ZnO films in visible range, thereby substantially enhancing the figure of merit.  相似文献   

4.
Ga-doped Zn0.7-xMg0.3O thin films were deposited on glass substrates at 350 °C by metal-organic chemical vapor deposition using an ultrasonic nebulization technique to transport the source precursors, and the effects of the Ga-doping concentration were investigated. The films with Ga-doping concentrations less than 5 mol% grew with [001] preferred orientation perpendicular to the substrate surface and were composed of large crystallites. At Ga content greater than 5 mol%, the films grew with random orientation and very small crystallite size. The charge carrier concentration in the films increased rapidly up to 4 mol% Ga and then decreased gradually with further increases in the Ga-content. The film resistivity decreased with increasing Ga-content up to 4 mol% due mainly to the increase in charge carrier concentration. Then, the resistivity increased gradually with increasing Ga-content due to the decrease in mobility. The lowest resistivity of the Ga-doped Zn0.7-xMg0.3O thin film was 3.8?×?10?1 Ωcm at the Ga doping concentration of 4 mol%. The mean transmittance in the visible range was more than 85% in all films. The optical band gap of the films increased with increasing Ga-doping concentration up to 5 mol% due to the Burstein-Moss effect.  相似文献   

5.
Indium tin oxide (ITO) films have been prepared by r.f. magnetron sputtering using powder target. X-ray diffraction analysis indicates that the deposited films were polycrystalline and retained a cubic bixbite structure. The ITO films deposited at low substrate temperature (T s) exhibit a (411) preferred orientation but the films deposited at high T s prefer a (111) orientation. The substrate temperature was found to significantly affect the electrical properties. As the T s was increased, the conductivity of ITO films was improved due to thermally induced crystallization. The lowest resistivity (8.7?×?10?4 Ω-cm) was obtained from ITO films deposited at 450 °C. However, optical properties of the films were somewhat deteriorated. The infrared (IR) reflectance of the film increases with increasing the substrate temperature.  相似文献   

6.
Transparent conducting In-doped (1at.%) zinc oxide (IZO) thin films are deposited on glass substrate by bipolar pulsed DC magnetron sputtering. We have investigated the effect of pulse frequency on the physical properties of the IZO films. A highly c-axis oriented IZO thin films were grown in perpendicular to the substrate. At optimal deposition conditions, IZO films with a smoothest surface roughness of ~3.6 nm, a low-resistivity of 5.8?×?10?3 Ωcm, and a high mobility of 14 cm/Vs were achieved. The optical spectra showed a high transmittance of above 85% in the UV–visible region and exhibited the absorption edge of near 350 nm. In micro-Raman, we observed the three phonon modes of host ZnO, which are E 2 low, E 2 high, and A 1 modes, and the three additional modes. The origin of three additional modes is attributed to the host lattice defect due to the effect of In dopant and increasing the pulse frequency.  相似文献   

7.
Al2O3‐doped ZnO (AZO) thin films have been deposited onto glass substrates using a split target consisting of AZO (1 wt%) and AZO (2 wt%) by pulsed laser deposition with an ArF excimer laser (λ = 193 nm, 15 mJ, 10 Hz, 0.75 J/cm2). By applying a magnetic field perpendicular to the plume, the lowest resistivity of 8.54 × 10?5Ω·cm and an average transmittance exceeding 91% over the visible range were obtained at a target‐to‐substrate distance of 25 mm for approximately 279‐nm‐thick AZO film (1.8 wt%) grown at a substrate temperature of 230 °C in vacuum. From cross‐sectional TEM observations and the XRD spectrum, a reason why the low resistivity (54 × 10?5Ω·cm) was reproducibly obtained was considered to be due to the fact that a disorder of crystal growth originating in the vicinity of the interface between the substrate and the film was suppressed by application of the magnetic field and the c‐axis orientation took preference, giving rise to the increase of mobility. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(2): 40–45, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20026  相似文献   

8.
For electrode materials of Pb(Zr,Ti)O3 (PZT) thin films in ferroelectric random access memory (FeRAM), various materials have been studied. As new electrode material with which the polarization and fatigue properties are improved, we take notice of barium metaplumbate BaPbO3 (BPO). Because the BPO contained lead (Pb) and oxygen is conductor that adopted same perovskite structure as PZT. BPO thin films were prepared by rf magnetron sputtering on various substrates. (SiO2/Si, MgO, Al2O3 and Pt-coated substrates), and influence of growth conditions (sputtering gas, rf power, the substrate-heating temperature and post anneals) on crystallization and conductivity were investigated. In case of post anneal after sputtering at room temperature, perovskite single phase was obtained above 400°C. In case of substrate heating while sputtering, without post anneal, perovskite single phase was obtained at 350–500°C on SiO2/Si substrates (110) preferred orientation BPO films obtained at low temperature, and resistivity of the films decreased at decreasing sputtering temperature. Resistivity of the film at substrate temperature 350°C was 3 × 10?3 Ω cm. In the case of single crystal substrate, the BPO films were epitaxially grown. Orientation of the films was varied with the sputtering condition. The epitaxial PZT thin films were also grown on the BPO, revealing that PZT(111)[011] //BPO(111)[011] //Pt(100)[011] //MgO(100)[011] and PZT(111)[011] //BPO(111)[011] //Pt(111)[011] //Al2O3(001)[100] structures were obtained, and their ferroelectric properties were also evaluated.  相似文献   

9.
ZnO transparent conducting thin films co-doped with aluminium and fluorine (AZO:F) were prepared on glass substrates by RF magnetron sputtering at room temperature. The effect of discharge power density on the microstructure, surface morphology, electrical and optical properties was investigated. From XRD analysis, it was revealed that the intensity of (002) favoured orientation of ZnO films increased with power density from 2.6 to 6.1?W/cm2 and then turned to a randomly orientated structure as power density continuously increased to 7.8?W/cm2. The film prepared at 6.1?W/cm2 showed a better crystallization and microstructure with larger, pyramid-like grains that were approximately 180?nm long and 90?nm wide. As a result, the electrical resistivity of the AZO:F films had a minimum of 4.1?×?10?4???cm. The improvement in the electrical resistivity of AZO:F films was due to the increase in carrier concentration from 8.8?×?1020 to 1.38?×?1021?cm?3 and the mobility from 5.8 to 11.8?cm2 V?1 s?1. The increase in carrier concentration with power density was also found to affect the optical property of the films due to the Moss-Burstein shift.  相似文献   

10.
ZnO:Al thin films for transparent conductors were deposited on sapphire (0001) substrates by using an RF magnetron sputtering technique. Effects of the O2/Ar flow ratio in the sputtering process on the crystallinity, carrier concentration, carrier mobility, and transmittance of the films were investigated. The FWHM of the (002) XRD intensity peak is minimal at the O2/Ar flow ratio of 0.5. According to the Hall measurement results the carrier concentration and mobility of the film decrease and thus the resistivity increases as the O2/Ar flow ratio increases. The transmittance of the ZnO:Al film deposited on the glass substrate is characteristic of standing wave. The transmittance increases as the O2/Ar flow ratio in-RF magnetron sputtering increases up to 0.5. Considering the effects of the the O2/Ar flow ratio on the electrical resistivity and transmittance of the ZnO:Al film the optimum O2/Ar flow ratio is 0.5 in the RF magnetron sputter deposition of the ZnO:Al film.  相似文献   

11.
Glass doped TiO2 (GTO) thin films were deposited by radio frequency (RF) magnetron sputter at room temperature and annealed in a reductive atmosphere containing 90 % N2 and 10 % H2. Highly dense TiO2 ceramic mixed with glass consisting of multi-metal oxides (as a sintering aid) was used as the sputtering target. This sintering aid allows low temperature densification of TiO2 target through a liquid phase wetting mechanism, and also works as a doping resource. XRD and FESEM were carried out to characterize the microstructure of the GTO films and the results reveal that the doping of multi-metal ions enhances the crystallization and increases the grain size of TiO2 films. TEM analysis also showed that these metal ions were dissolved into TiO2 lattices. The electrical and optical properties of TiO2 thin films at different glass concentrations were evaluated and compared to the films merely doped with MoO3. The electrical resistivity of the GTO films reaches 9.1 × 10–4 Ω·cm at 2 wt% glass doping, corresponding to a carrier density of 8.9 x 1020 cm-3 and a mobility of 7.1 cm2/Vs. Meanwhile, the electrical resistivity of the TiO2 film doped with glass was found to be lower than that of MoO3-doped film. This was mainly attributed to the increase in carrier concentration by double doping effect of glass. The optical band gap of the GTO films ranged from 3.34 to 3.42 eV, which is greater than that of the un-doped TiO2 film. This blue shift of approximately 0.18 eV was due to the Burstein-Moss effect.  相似文献   

12.
Abstract

High sensitive pyroelectric infrared (IR) sensors have been fabricated by using c-axis oriented La-modified PbTiO3 (Pb1–xLaxTi1?x/4O3, PLT) thin films. The PLT thin films were deposited on (100)-cleaved MgO single crystal substrates by intermittent rf-magnetron sputtering method. The PLT thin films have high figures of merit for IR sensor without a poling treatment. High performance pyroelectric IR sensors (single element type and linear array type) were fabricated by using PLT (x=0·1, γ=5·5x10?8 C/cm2K, ?r=200) thin films. The sensors have remarkably high D* of 3–6x108 cmHz1/2/W and very fast response. A new compact IR sensing system using the linear array sensor (8 elements) has been developed for a new type of room air-conditioner. This system can measure thermal distribution (8x64) by horizontal scanning of the vertical linear array. Image processing with neural network concept makes possible high-accuracy using a few data from the sensor elements. This sensing system provides ‘‘smart airconditioning'’to improve the comfortable control.  相似文献   

13.
BaPbO3 films were fabricated by a chemical solution deposition on the SiO2/Si(100) and MgO(100) substrates followed by a post-deposition annealing at the temperatures between 673 and 1073 K under oxygen flow. Polycrystalline BaPbO3 films were formed together with secondary phases such as PbO and Pb3O4 onto MgO(100) substrates at around 750 K, and the films were crystallized into single phase of BaPbO3 above 823 K. Endothermic peak in differential thermal analysis due to crystallization of BaPbO3 was observed at 750 K, which is consistent with crystallization temperature of BaPbO3 estimated from X-ray diffraction. The electrical resistivity depended on the annealing temperature even in the single phase BaPbO3 films, the lowest resistivity of 3?×?10?6 μΩ·m which was comparable to that of bulk BaPbO3 was achieved at the annealing temperature of 873 K.  相似文献   

14.
Abstract

CeO2 and SrBi2Ta2O9 (SBT) thin films for MFISFET (metal-fcrroelectrics-insulator-semiconductor field effect transistor) were deposited by rf sputtering and pulsed laser deposition method, respectively. The effects of oxygen partial pressure during deposition for CeO2 films were investigated. The oxygen partial pressure significantly affected the preferred orientation, grain size and electrical properties of CeO2 films. The CeO2 thin films with a (200) preferred orientation were deposited on Si(100) substrates at 600°C. The films deposited under the oxygen partial pressure of 50 % showed the best C-V characteristics among those under various conditions. The leakage current density of films showed order of the 10?7~10?8 A/cm2 at 100 kV/cm. The SBT thin films on CeO2/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure composed of the SBT film annealed at 800°C, the memory window width was 0.9 V at ±5 V. The leakage current density of Pt/SBT/CeO2/Si structure annealed at 800°C was 4×10?7 A/cm2 at 5 V.  相似文献   

15.
ZnO films co-doped with H and Al (HAZO) were prepared by sputtering ZnO targets containing Al2O3 dcontent of 1 (HA1ZO series) and 2 wt.% (HA2ZO series) on Corning glass (Eagle 2000) at substrate temperature of 150 °C with Ar and H2/Ar gas mixtures. The effects of hydrogen addition to Al-doped ZnO (AZO) films with different Al contents on the electrical, optical and structural properties of the as-grown films as well as the vacuum- and air-annealed films were examined. For the as-deposited films, the free carrier number in both series of HAZO films increased with increasing H2 content in sputter gas. HA2ZO film series prepared from target containing 2 wt.% Al2O3 showed better crystallinity and higher carrier concentration than HA1ZO film series deposited using target containing 1 wt.% Al2O3. The crystallinity and the Hall mobility of HA2ZO film series decreased with increasing H2 content in sputter gas, while those of HA1ZO film series showed a reversed behavior. Although HA2ZO film series yielded lower resistivity than HA1ZO film series due to higher carrier concentrations, the higher figure of merit (expressed as 1?/?ρα, where ρ and α represents the resistivity and absorption coefficient, respectively) was observed for HA1ZO film series because of substantially low absorption loss in these films. When annealed in air ambient, HA1ZO film series showed much stronger stability than HA2ZO film series. Vacuum-annealing resulted in drop of the carrier concentrations as well as large shrinkage in lattice constant, which indicated that the hydrogen dopants are in relatively volatile state and can be removed easily from the films upon annealing.  相似文献   

16.
We carried out comprehensive studies on structural, optical, and electrical properties of gallium-doped zinc oxide (Ga:ZnO) films deposited by atomic layer deposition (ALD). The gallium(III) isopropoxide (GTIP) was used as a Ga precursor, which showed pure Ga2O3 thin film with high growth rate. Using this precursor, conductive Ga doped ZnO thin film can be successfully deposited. The electrical, structural and optical properties were systematically investigated as functions of the Ga doping contents and deposition temperature. The best carrier concentration and transmittance (7.2?×?1020 cm?3 and 83.5 %) with low resistivity (≈3.5?×?10?3?Ωcm) were observed at 5 at.% Ga doping concentration deposited at 250 °C. Also, low correlation of deposition temperature with the carrier concentration and film structure was observed. This can be explained by the almost same atomic radius of Ga and Zn atom.  相似文献   

17.
By the radio frequency (RF) magnetron sputtering methods, (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 (BSTZ) ferroelectric thin films were deposited on the Pt/Ti/SiO2/Si(100) substrates. The crystal structural and microstructure of these thin films were analyzed by means of the XRD, SEM, and AFM. Moreover, the dielectric characteristics were also investigated by the C-V and J-E analyses. The optimal deposition parameters for these BSTZ thin films were: RF power is 160 W, oxygen concentration is 25%, substrate temperature is 580°C, and chamber pressure is 0.075 mPa. Under these optimal deposition conditions, the (111) and (110) oriented polycrystalline of the BSTZ thin films grow easily. And under a bias voltage of 0.5 MV/cm, the dielectric constant and leakage current density of the BSTZ thin films are 191 and 3×10?8 A/cm2, respectively. In addition, under various measured temperatures (0 ~ 80°C) and frequencies (100 kHz ~ 1 MHz), all the dielectric constants remain almost unchanged. Compared to BSTZ thin films reported previously, in this study, the deposited thin films have the advantage of lower leakage current and hence are suitable for the applications of dynamic random access memory.  相似文献   

18.
Highly c-axis-oriented zinc oxide (ZnO) thin films were deposited on Au electrodes by reactive radio frequency (RF) magnetron sputtering and their sputtering pressure on thin film bulk acoustic-wave resonator (FBAR) characteristics are presented. The evolution of the preferred orientation and the surface morphologies of the deposited ZnO films are investigated using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurement techniques. The result obtained in this study show that the ZnO films prepared using a lower sputtering pressure of 2?×?10?3 Torr have a strong c-axis orientation, promote smoother surface and higher resonance frequency. The experimental results demonstrate that the fabricated two-port FBAR using the optimum process parameters yields an effective electromechanical coupling constant ( $ k^{2}_{{{\text{eff}}}} $ ) of 2.8%, series quality factor (Q s) of 436, and a parallel quality factor (Q p) of 600.  相似文献   

19.
Transparent conductive oxide (TCO) thin films such as tin doped indium oxide (ITO), zinc doped indium oxide (IZO) and Al doped zinc oxide (AZO) have been widely used as transparent electrode for display. ITO and AZO thin films for display was prepared by the facing targets sputtering (FTS) system. The FTS method is called a plasma-free sputter method because the substrate is located apart from plasma. This system can deposit the thin film with low bombardment by high energetic particles in plasma such as γ-electrons, negative ions and reflected Ar atoms. ITO and AZO thin films were deposited on glass substrate at room temperature with oxygen gas flow rate and input power. And the electrical, structural and optical properties of the thin films were investigated. As a result, the resistivity of ITO, AZO thin film is 6?×?10?4 Ω cm, 1?×?10?3 Ω cm, respectively. And the optical transmittance of as-deposited thin films is over 80% at visible range.  相似文献   

20.
Abstract

By means of planar multitarget sputtering (001) oriented PbTiO3 films were deposited onto highly preferred (100) oriented platinum electrodes on (100) MgO single crystal substrates. Single phase perovskite type films with a degree of (001) orientation between 60% and 70% have been sputtered at substrate temperatures as low as about 470°C. The as grown films exhibit a dielectric constant in the range of 120 to 140 and a pyroelectric coefficient of about 20 nCcm?2K?1 at room temperature. The dielectric loss is about 0.01 at frequencies from 1 to 10 kHz. (100) GaAs substrates with an evaporated, highly oriented (100) MgO buffer layer were also used as substrates. However, on these substrates the platinum bottom electrode did not grow highly oriented though the same deposition parameters for Pt deposition as in the case of the single crystalline MgO substrate were used. That's why PbTiO3 was produced with a lower (001) preferred orientation. Therefore, the dielectric constant is higher (170–190) and the pyroelectric coefficient is lower (12 nCcm?2K?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号