首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
π‐Conjugated polymers show promise as active materials in application areas such as microelectronics, electro‐optics, opto‐electronics, and photonics. A critical feature in this emerging technology is device fabrication and the reproducible deposition of active material. This review focuses on current trends in the spatial deposition of conjugated polymers.  相似文献   

4.
5.
6.
7.
Among organic materials vitrification for many years was regarded mainly as a privilege of polymers. However, recently a lot of attention is paid to organic low molar mass compounds that readily form glasses above room temperature. Such compounds are called molecular glasses or amorphous molecular materials. Among these materials the most widely studied are charge‐transporting molecular glasses used in copiers and laser printers, organic light‐emitting diodes, photovoltaic devices, and as photorefractive materials. Two types of molecular glasses, i.e., p‐type (hole‐transporting), and n‐type (electron‐transporting) are discussed. Work of the laboratories of the authors is emphasized. In addition, an overview of current and potential applications for these materials is presented.  相似文献   

8.
9.
10.
11.
12.
In this Review, the extreme care that must be taken when predicting the optical properties of conjugated polymers via the oligomer approach, and when comparing theoretical and experimental data, is illustrated. In the first part, conceptual strategies for the correct determination of optical transitions from experimental spectra and relevant extrapolation procedures at the polymer limit are introduced. The impact of conformational, substitution, solvent, and solid‐state effects on the optical properties is discussed in light of experimental data reported for molecular backbones based on phenylene, phenylenevinylene, and thiophene repeat units. A comparison is then made between experimental results and those provided by standard quantum‐chemical methods, to assess their reliability.  相似文献   

13.
14.
15.
16.
17.
π‐Conjugated molecules are interesting components to prepare fluorescent nanoparticles. From the use of polymer chains that form small aggregates in water to the self‐assembly of small chromophoric segments into highly ordered structures, the preparation of these materials allows to develop systems with applications as sensors or biolabels. The potential functionalization of the nanoparticles can lead to specific probing. This progress report describes the recent advances in the preparation of such emittive organic nanoparticles.  相似文献   

18.
19.
Conjugated polymers with tailored donor–acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g‐C3N4) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor‐π–acceptor‐π–donor polymers are prepared by incorporating 4,4′‐(benzoc 1,2,5 thiadiazole‐4,7‐diyl) dianiline (BD) into the g‐C3N4 framework (UCN‐BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN‐BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN‐BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN‐BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h?1 g?1), which is nearly six times of that of the pristine g‐C3N4. In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g‐C3N4‐based D‐π–A‐π–D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production.  相似文献   

20.
The properties of random lasers in π‐conjugated polymer films and solutions infiltrated into opal photonic crystals are reviewed. We show that random lasing is a generic phenomenon that occurs in disordered gain media at an excitation intensity regime higher than that giving rise to amplified spontaneous emission. The emission radiation is coherent as demonstrated by photon statistics methods, and its spectrum contains many laser modes from which a typical cavity length can be obtained using Fourier transform spectroscopy. Since the random cavities are independent from each other, we show that laser emission in several colors is possible when mixing different dyes in the same random cavities. In addition, it is demonstrated that random lasing is formed in many disordered media with various scattering properties ranging from a regime of light prelocalization to that of weak scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号