首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of investigations of a valved pulse combustor to choose optimal geometry, which covered measurements of the flow rates of air and fuel, pressure oscillations, including pressure amplitude and frequency and flue gas composition are presented in the paper. Experimental studies compsiring the operation of the pulse combustor coupled with a drying chamber and working separately are described. It was found that coupling of the pulse combustor with a drying chamber had no significant effect on the pulse combustion process. Smoother runs of pressure oscillations in the combustion chamber, lower noise level and slightly higher NOx emission were observed. The velocity flow field inside the drying chamber was measured by LDA technique. Results confirmed a complex character of pulsating flow in the chamber. A large experimental data set obtained from measurements enabled developing a neural model of pulse combustion process. Artificial neural networks were trained to predict amplitudes and frequencies of pressure oscillations, temperatures in the combustion chamber and emission of toxic substances. An excellent mapping performance of the developed neural models was obtained. Due to complex character of the pulse combustion process, the application of artificial neural networks seems to be the best way to predict inlet parameters of a drying agent produced by the pulse combustor  相似文献   

2.
ABSTRACT

Results of investigations of a valved pulse combustor to choose optimal geometry, which covered measurements of the flow rates of air and fuel, pressure oscillations, including pressure amplitude and frequency and flue gas composition are presented in the paper. Experimental studies compsiring the operation of the pulse combustor coupled with a drying chamber and working separately are described. It was found that coupling of the pulse combustor with a drying chamber had no significant effect on the pulse combustion process. Smoother runs of pressure oscillations in the combustion chamber, lower noise level and slightly higher NOx emission were observed. The velocity flow field inside the drying chamber was measured by LDA technique. Results confirmed a complex character of pulsating flow in the chamber. A large experimental data set obtained from measurements enabled developing a neural model of pulse combustion process. Artificial neural networks were trained to predict amplitudes and frequencies of pressure oscillations, temperatures in the combustion chamber and emission of toxic substances. An excellent mapping performance of the developed neural models was obtained. Due to complex character of the pulse combustion process, the application of artificial neural networks seems to be the best way to predict inlet parameters of a drying agent produced by the pulse combustor  相似文献   

3.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

4.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

5.
纸张脉动燃烧尾气冲击流干燥过程的实验研究   总被引:1,自引:0,他引:1  
脉动燃烧因其传热效率高、结构紧凑、环境污染小等优点而广泛应用于生产生活中,冲击干燥同样也能形成强烈的热质交换,本文将上述两种干燥技术结合应用。为了探讨脉动燃烧尾气冲击流干燥的性能,研制了小型Helmh01tz脉动燃烧器,并对脉动燃烧尾气冲击流干燥技术应用于纸张的干燥过程进行了实验研究。分析了气流辐射半径和燃料流量两个参数对干燥过程的影响,可以看出随着气流辐射半径的增加,干燥速度降低。此外还对不同干燥条件下的纸张干燥时间进行了估计,为实际生产提供参考。  相似文献   

6.
Spray drying of NaCl solution was carried out under an intense oscillating flow field generated by a pulse combustor. A pulse combustion spray drying system was constructed. An optical analyzer was used to measure the particle diameter distribution of droplets atomized by a pulsating flow. The momentum, heat and mass transfer in both gaseous and particulate phases during spray drying inside the drying chamber were simulated using the computational fluid dynamics method. The simulated profiles of flow field, temperature and humidity of the gaseous phase, as well as the particulate phase, in the drying chamber were presented. The simulation showed changes of the flow field and particle trajectories in the drying chamber during one pulsating period. A large-scale vortex was observed in the upper part of the drying chamber because of the unstable state of flow field and particle trajectories. Short drying time and large evaporation rate are characteristics of pulsating spray drying. The influence of gas stream pulsation frequency on the drying process is also analyzed.  相似文献   

7.
A pulse combustor employed in a spray-drying system offers a new approach for liquid atomization that yields high-quality powders at low cost. Using a pulse combustion atomizer, there is no need for any form of nozzle dispersion and its atomization mechanism differs from those of conventional atomizers, such as rotary atomizers and pressure and pneumatic nozzles. In this work, based on the analysis of atomization mechanism, experiments of unsteady pulsating atomization were carried out in an experimental system of a Helmholtz-type pulse combustor. An optical analyzer was used for measuring the mean diameter of atomized droplet and droplet distribution. The effects of liquid feed rate, air flow oscillatory frequency, and liquid viscosity on atomized droplet size and size distribution were investigated and analyzed. The results indicate that the uniform droplet size distribution can be obtained under the conditions of a low feed rate, high-frequency pulsating flow, and moderate viscosity. The range of the droplets' Sauter mean diameter (SMD) is between 50 and 80 µm. The pulsating air flow from the pulse combustor can be used to atomize liquid or slurry without a nozzle and the atomizing quality can meet the requirements of spray drying.  相似文献   

8.
A pulse combustor employed in a spray-drying system offers a new approach for liquid atomization that yields high-quality powders at low cost. Using a pulse combustion atomizer, there is no need for any form of nozzle dispersion and its atomization mechanism differs from those of conventional atomizers, such as rotary atomizers and pressure and pneumatic nozzles. In this work, based on the analysis of atomization mechanism, experiments of unsteady pulsating atomization were carried out in an experimental system of a Helmholtz-type pulse combustor. An optical analyzer was used for measuring the mean diameter of atomized droplet and droplet distribution. The effects of liquid feed rate, air flow oscillatory frequency, and liquid viscosity on atomized droplet size and size distribution were investigated and analyzed. The results indicate that the uniform droplet size distribution can be obtained under the conditions of a low feed rate, high-frequency pulsating flow, and moderate viscosity. The range of the droplets' Sauter mean diameter (SMD) is between 50 and 80 µm. The pulsating air flow from the pulse combustor can be used to atomize liquid or slurry without a nozzle and the atomizing quality can meet the requirements of spray drying.  相似文献   

9.
The paper presents a theoretical and experimental analysis of a pulse combustion spray drying system. Measurements of the velocity flow field inside the drying chamber and extensive tests on drying and water evaporation were carried out for various feed rates and operating parameters of the pulse combustor. Each test included the analysis of temperature distribution in the dryer, evaporation level and sprayed material structure. LDA and PDA techniques were employed to determine the character of pulsating flow in the chamber, amount of water evaporated and to perform a profound analysis of spray structure. Experimental results show an intensive and efficient drying process. An attempt was made to perform theoretical predictions of velocity and temperature distribution in the drying chamber. The CFD technique was used to calculate time-dependent flow in the chamber. Results show vanishing velocity, pressure and temperature oscillations along the length of the drying chamber. Temperature oscillations decline faster than oscillations of pressure and velocity. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber. Discrepancies might be caused by simplification of the system geometry and flow pattern which were assumed to perform calculations in reasonable time.  相似文献   

10.
对脉动燃烧尾气冲击流的传热将性进行了实验研究。利用自制的小型Helmhonz脉动燃烧器产生的尾气直接冲击陶瓷板,改变不同参数并测量各点温度随时间的变化,以预测纸张或织物等平面物料的传热特性及流动特性;根据测量数据得出了不同条件下的传热系数曲线;对脉动尾气流增强传热的可能原因进行了讨论。  相似文献   

11.
Analysis of combustion efficiency in CFB coal combustors   总被引:1,自引:0,他引:1  
Afsin Gungor 《Fuel》2008,87(7):1083-1095
Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged.  相似文献   

12.
Low-rank coals (LRCs) constitute about 45% of the total coal reserves and hence will soon be the fossil fuel of choice in many countries despite their high moisture content on mining, which varies from 30% to as high as 66%. It is important to reduce their water content to enhance the heating value and reduce transportation costs while enhancing combustion efficiency, safety, and reduction of emissions on combustion. The level of moisture to be achieved upon drying LRCs depends on the end application; it varies from as low as 0% for hydrogenation processes to 15% for briquetting and gasification processes. Numerous drying technologies have been proposed for drying coal; they include pulse combustion, vacuum, fluid bed, rotary, flash, microwave, and superheated steam drying. Each technology has some pros and cons, which are not always clearly spelled out in the literature. In addition, it is necessary to develop sustainable rather than just cost-effective drying systems for LRC. In this article we assess various coal drying techniques critically and identify their strengths and weaknesses. Some theoretical comparisons of different dryer types are carried out based on energy utilization and carbon footprints. The jury is still out on optimal drying technology for LRC and innovative design concepts should be evaluated before finalizing the selection.  相似文献   

13.
煤粉低尘燃烧器内燃烧特性的数值模拟   总被引:1,自引:1,他引:0  
介绍了一种用于中小型工业窑炉的新型煤粉低尘燃烧技术,利用计算机数值模拟考察了煤粉低尘旋流燃烧器的特性. 在合理选择气相流动、固相流动、煤燃烧及NO的生成等模型的同时,针对旋流燃烧场中固体颗粒在壁面附近的碰撞及熔融特性,探讨了煤粉在壁面处的运动模型,并以此为基础考察了燃烧场的两相流动特性,模拟了燃烧器内煤粉的燃烧过程及各物理量的分布. 在与实验比较的基础上,对燃烧器的结构进行了改进. 结果表明,在低化学计量比下,改进后的燃烧器性能更好,颗粒在燃烧器内充分燃尽,在保证液排渣效果的同时,NO的排放远低于常规液排渣旋风器的NO排放量.  相似文献   

14.
张健 Nieh  S 《化工学报》1995,46(5):552-556
应用本文(Ⅰ)报建立和发展的二维强旋湍流气-固两相流动和煤粉燃烧的数学模型、对新型燃煤涡旋燃烧炉内的冷态流动、气体燃烧和煤粉燃烧进行了系统的数值模拟,得到了与冷、热态实验数据基本相符合的结果,揭示了炉内流动、传热和燃烧的基本性质和特点。  相似文献   

15.
This paper reviews the SO2 emission from a 0.3 m2 stainless‐steel fluidized‐bed combustor. Fine coal was premixed with fine limestone and fed pneumatically under the bed. The SO2 emission was found to depend largely on air staging ratio and bed temperature, which agrees with previous observations. The SO2 emission observed in sorbent‐free tests (reported earlier by Khan and Cibbs, 1995) was found to be proportional to the sulphur content of the fuel when limestone was added, the sulphur capture at a fixed Ca/S molar ratio was dependent on oxygen stoichiometry and bed temperature. Finely sized limestone enhanced the effectivity of the sorbent at low bed temperature and air staging ratio. During staged combustion, the combustion efficiency depended largely on primary air to coal ratio. Around 90% combustion efficiency was observed at 1 m/s fluidizing velocity which was reduced when fluidizing velocity was increased to 1.5 and 2 m/s. This reduction is due to increased elutriation of finer coal particles from the combustor.  相似文献   

16.
This paper reviews the recent advances and general trends in drying technologies of industrial interest. Numerous emerging technologies are listed with emphasis on the following five areas: Carver-Greenfield Process for drying of sludges. superheated steam drying, pulse combustion drying, high intensity drying techniques for paper and the novel impinging stream dryers. Potential application areas for the new technologies are identified.  相似文献   

17.
DRYING TECHNOLOGIES OF THE FUTURE   总被引:6,自引:0,他引:6  
This paper reviews the recent advances and general trends in drying technologies of industrial interest. Numerous emerging technologies are listed with emphasis on the following five areas: Carver-Greenfield Process for drying of sludges. superheated steam drying, pulse combustion drying, high intensity drying techniques for paper and the novel impinging stream dryers. Potential application areas for the new technologies are identified.  相似文献   

18.
An important stage of the development of promising engine and propulsion systems is provision of an effective process of hydrocarbon fuel combustion. There are many publications with numerical and experimental data on combustion of various gaseous hydrocarbons under laboratory conditions, but there is a lack of data on effective combustion of hydrocarbons in short combustion chambers with a large number of injectors. Results of systematic experimental studies of natural gas (methane) combustion in a high-velocity subsonic air flow in an air-breathing model combustor with a rectangular cross section are presented in this paper.  相似文献   

19.
去耦室压力变化对脉动燃烧器尾管传热的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
翟明  董芃  彭三珑  夏新林 《化工学报》2009,60(11):2699-2704
去耦室是脉动燃烧器的重要部件,除降低燃烧噪声外,其另一作用是保证尾管出口声学边界条件,维持整个燃烧器的运行性能。在一台无阀自激脉动燃烧器尾部建立了去耦室压力控制系统,通过调节引风机前的阀门开度来改变去耦室内部压力即尾管出口压力大小(调节范围-10~10 kPa),实验研究了去耦室压力变化对脉动燃烧器尾管传热的影响。结果表明:当去耦室压力高于或低于大气压力时,尾管中的传热系数均能提高,而去耦室压力为负值时,尾管传热系数相对较高;燃烧室压力幅值的大小和速度比的大小均能反映传热系数的高低。  相似文献   

20.
Results of experimental investigations of a multi-injector combustion chamber in the attached pipeline regime are presented. An IT-302M hotshot wind tunnel based at the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences is used as a source of a high-enthalpy gas (air). The tests are performed at Mach numbers of 3, 4, and 5 in the ranges of the total temperature from 2000 to 3000 K and static pressure from 0.08 to 0.23 MPa. The block of injectors is made in two variants: with different relative lengths of wedge-shaped injectors (cocurrent injection of hydrogen). The influence of the conditions at the combustor entrance on ignition and stable combustion of hydrogen is studied. Intense combustion of hydrogen is obtained only at Mach numbers of 3 and 4. The mechanism of the “two-stage” evolution of fuel combustion in the combustor is analyzed. The experimental data are analyzed and compared with numerical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号