首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of elevating the spout on the dynamics of a spout‐fluidized bed, both numerically and experimentally is studied. The experiments were conducted in a pseudo‐two‐dimensional (2‐D) and a cylindrical three dimensional (3‐D) spout‐fluidized bed, where positron emission particle tracking (PEPT) and particle image velocimetry (PIV) were applied to the pseudo‐2‐D bed, and PEPT and electrical capacitance tomography (ECT) to the cylindrical 3‐D bed. A discrete particle model (DPM) was used to perform full 3‐D simulations of the bed dynamics. Several cases were studied, that is, beds with spout heights of 0, 2, and 4 cm. In the pseudo‐2‐D bed, the spout‐fluidization and jet‐in‐fluidized‐bed regime, were considered first, and it was shown that in the spout–fluidization regime, the expected dead zones appear in the annulus near the bottom of the bed as the spout is elevated. However, in the jet‐in‐fluidized‐bed regime, the circulation pattern of the particles is affected, without the development of stagnant zones. The jet‐in‐fluidized‐bed regime was further investigated, and additionally the experimental results obtained with PIV and PEPT were compared with the DPM simulation results. The experimental results obtained with PIV and PEPT agreed mutually very well, and in addition agreed well wtih the DPM results, although the velocities in the annulus region were slightly over predicted. The latter is probably due to the particle‐wall effects that are more dominant in pseudo‐2‐D systems compared with 3‐D systems. In the jet‐in‐fluidized‐bed regime, the background gas velocity is relatively high, producing bubbles in the annulus that interact with the spout channel. In the case of a non elevated spout, this interaction occurs near the bottom of the bed. As the spout is elevated, this interaction is shifted upwards in the bed, which allows the bubbles to remain undisturbed providing the motion of the particles in the annulus near the bottom of the bed. As a result, no dead zones are created and additionally, circulation patterns are vertically stretched. These findings were also obtained for the cylindrical 3‐D bed; although, the effects were less pronounced. In the cylindrical 3‐D bed the PEPT results show that the effect on the bed dynamics starts at hspout =1 4 cm, which is confirmed by the ECT results. Additionally, ECT measurements were conducted for hspout =1 6 cm to verify if indeed the effect happens at larger spout heights. The root mean square of the particle volume fraction slightly increased at hspout =1 2 cm, whereas a larger increase is found at hspout = 4 and 6 cm, showing that indeed more bubbles are formed. The presented results have not been reported so far and form valuable input information for improving industrial granulators. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2524–2535, 2012  相似文献   

2.
Miniemulsification technology was used to encapsulate TiO2 particles inside a styrene/n‐butyl acrylate copolymer with high loading levels (11 to 70% PVC (pigment volume concentration)). In this approach, a St/BA copolymer dissolved in toluene in the presence of a costabilizer (hexadecane) was mixed with a dispersion of TiO2 particles in toluene and sonified, and then emulsified in an aqueous surfactant solution by sonification. The effect of sonification time on both the dispersibility of the TiO2 particles in the presence of the copolymer and hexadecane and on the encapsulated particle size was investigated. Particle size analysis by dynamic light scattering showed that these composite latexes are quite stable. It was also found that as the TiO2 loading increased from 11 to 43% PVC, the particle size of the TiO2 dispersion decreased while the polymer‐encapsulated TiO2 particle size increased. The effect of surfactant concentration (sodium lauryl sulfate, SLS) on the encapsulated particle size was investigated using four different SLS concentrations in the 11% PVC system. The results showed that as the SLS concentration increased the particle size decreased, as expected. Also it was found that the minimum surfactant concentration that gives stable encapsulated TiO2 particles is above 10 mM SLS. The role of HD in the recipe was studied for an artificial latex containing no TiO2 and one prepared at 11% PVC, in terms of particle size before and after solvent stripping, and its effect on the Tg. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4504–4516, 2006  相似文献   

3.
A magnetic filter system has been constructed, and its performance has been investigated, to measure the magnetic property of monodisperse γ -Fe 2 O 3 particles in the size range from 100 to 300 nm. In the system, SS 430 screens are placed in the magnetic filter element and exposed to a strong external magnetic field generated by an electric coil. The high magnetic field gradient resulted from magnetized fine wires enhances the collection of magnetic particles in addition to the particle collection via the diffusion mechanism. The particle concentrations at the upstream and downstream of the magnetic filter element were measured by an Ultrafine Condensation Particle Counter (UCPC, TSI model 3025A). Particle penetration obtained in the experiment is a function of particle size, particle magnetic property, and wire magnetization. To retrieve the magnetic property of characterized particles from the measured penetration data, a numerical model was further developed using the finite element package COMSOL Multiphysics 3.5. In this modeling, a single mesh screen is assumed to be represented by unit cells. The flow, the magnetic fields, and particle trajectory were solved in a unit cell. The relationship between particle penetration and magnetic property can then be obtained via this model for the given particle size, aerosol flowrate, and external magnetic field strength. The numerical model was first validated by comparing the experimental penetration with the simulation results for the case of 100, 150, and 250 nm γ -Fe 2 O 3 particles having the magnetic susceptibility characterized by Vibrating Sample Magnetometer (VSM). The magnetic susceptibilities of other sizes from 100 to 300 nm were then derived from this model according to the measured penetration data.  相似文献   

4.
The application of a density gradient column (DGC) method using sodium polytungstate (SPT) solutions as the medium was investigated for determining the encapsulation efficiency of 11–30% pigment volume concentration (PVC)) latex particles prepared by the miniemulsification process. The encapsulation efficiencies for 11, 20, and 30% PVCs were found to be 100% of the TiO2 encapsulated inside 86.3, 98, and 98.9% of the styrene/n‐butyl acrylate copolymer, respectively. The copolymer not participating in the encapsulation (free copolymer) was found in the 1.04 g/mL density layer of the DGC. Particle size analysis by DLS (dynamic light scattering) showed that the encapsulated particle size increased with increasing density. Thus, the number of TiO2 particles (primary particles) inside each encapsulated particle increased to accommodate both the increased size and density. The results obtained by DLS for each DGC layer of the 30% PVC system were confirmed qualitatively by TEM in terms of the increasing encapsulated particle size and broadening of the size distribution as the density increased in the DGC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4517–4525, 2006  相似文献   

5.
6.
From rod‐climbing rheometer measurements, we systematically investigated the normal stress values of suspended particles in polymeric liquids at low shear rates using the second‐order fluid constitutional relationship. The climbing constants β of the suspended α‐Fe2O3 particles in polyisobutylene/polybutene solutions, which exhibit Boger fluid characteristics (highly elastic, but no shear‐thinning), were estimated from the rod‐climbing experiment, showing that β increased with polymer concentration and polymer molecular weight. The first normal stress difference coefficient of the suspended α‐Fe2O3 in polymeric liquids obtained from the rod‐climbing rheometer was well correlated with the rheological properties measured by rotational rheometers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1548–1552, 2004  相似文献   

7.
A novel polyurethane (PU)‐SiO2 core–shell particle dispersion was prepared by an acid‐catalyzed sol–gel process using cationic–nonionic PU particle as template. Results of average sizes, polydispersity index, and transmission electron microscope indicated that tetramethylorthosilicate were first diffused to the surface of PU particles, then occurring hydrolysis–condensation reaction to form core–shell particles. Antireflection coating formulation was prepared by as‐prepared core–shell particle dispersion and SiO2 sol binder. After dip‐coating in the formulation, antireflection coating was formed on glass surface by calcination. Scanning electron microscopy images showed that pores had been formed inside coating after removing PU template particles, and the coating surface could be almost fully closed. In addition, ultraviolet–visible spectrophotometer analysis showed that the maximum transmittance of antireflection glasses can be as high as 98.6% at 548 nm. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45762.  相似文献   

8.
Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (ΔP), dispersion, CH4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH4 conversion/ΔP. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4162–4176, 2018  相似文献   

9.
Miniemulsion copolymerization of styrene/n‐butyl acrylate was investigated as a means of encapsulating hydrophilic titanium dioxide (TiO2) in a film‐forming polymer. Dispersion studies of the TiO2 were first carried out to determine the choice of stabilizer, its concentration, and the dispersion process conditions for obtaining stable TiO2 particles with minimum particle size. Through screening studies of various functional stabilizers and shelf‐life stability studies at both room and polymerization temperatures, Solsperse 32,000 was selected to give relatively small and stable TiO2 particles at 1 wt % stabilizer and with 20–25 min sonification. The subsequent encapsulation of the dispersed TiO2 particles in styrene/n‐butyl acrylate copolymer (St/BA) via miniemulsion polymerization was carried out and compared with a control study using styrene monomer alone. The lattices resulting from the miniemulsion encapsulation polymerizations were characterized in terms of the encapsulation efficiencies (via density gradient column separations; DGC) and particle size (via dynamic light scattering). Encapsulation efficiencies revealed that complete encapsulation of all of the TiO2 by all of the polymer was not achieved. The maximum encapsulation efficiencies were 79.1% TiO2 inside 61.7% polystyrene and 63.6% TiO2 inside 38.5% St/BA copolymer. As the density of the particles collected from the DGC increased from one layer to another, both the average particle size and the number of the TiO2 particles contained in each latex particle increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3479–3486, 2006  相似文献   

10.
Positron emission particle tracking (PEPT) is a non-invasive technique that can be used for following the trajectories of particles in fluidized beds, so increasing understanding of solids motion in fluidized bed processes. We describe how PEPT is applied, how its performance is optimized, and how trajectory information can be built up into instantaneous and time-averaged measures of particle movement. Choices and pitfalls in data processing are explained and illustrated by reference to the travelling fluidized bed (TFB) collaboration initiated by Professor John Grace.  相似文献   

11.
Poly(butyl acrylate)/poly(vinyl acetate‐co‐methyl methacrylate) PBA/P(VAc‐co‐MMA) core–shell rubber particles with various shell compositions, i.e., VAc/MMA weight ratios, were used to toughen unsaturated polyester. The morphology and surface‐free energy of the rubber particles were determined by transmission electron microscopy (TEM) and contact angle measurements, respectively. The effect of shell structure on the dispersion state of rubber particles inside the unsaturated polyester resin was studied by scanning electron microscopy and TEM. Increasing MMA units in the shell changed the particle dispersion state from small agglomerates or globally well‐dispersed particles to large aggregates in the cured‐resin matrix. For the blends that contain 5 wt% rubber, the highest un‐notched impact toughness, stress‐intensity factor (KIC), and fracture energy (GIC) were observed for the blend containing PVAc shell particles. The results showed that by increasing the particle level from 5 to 10 wt%, the highest KIC and GIC values were obtained for the blend containing rubber particles with VAc/MMA (80/20 wt/wt) copolymer shell. The crack‐tip damage zone in the neat and rubber‐modified unsaturated polyester resins was observed by means of transmission optical microscopy. In addition, using PVAc shell particles exhibited a minimum reduction in the volume shrinkage and tensile properties of the rubber‐modified resin. POLYM. ENG. SCI., 52:1928–1937, 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
Particle charging via the mixing of aerosols with unipolar ions typically results in multiple charges on particles. Particle classification and sizing, based on the electrical mobility, ideally requires all the particles being singly charged to the performance enhancement. In this study, we explored the feasibility of maximizing the singly charged fraction of particles via the control of the Nit product in a unipolar charger. The feasibility was first investigated by modeling unipolar diffusion charging. It was found that the singly charged fraction of monodisperse particles could be maximized by the control of the Nit product. A corona-based unipolar charger was also constructed to study the maximization of the singly charged fraction of monodisperse particles. It was found that a wider range of ion concentration in the charging zone could be obtained by the variation of ion-driving voltage compared to that by changing the corona-discharge current. The maximum singly charged fraction of monodisperse particles in various sizes was characterized when the charger was operated at the flow rates of 1.5 and 3.0 lpm. It was evidenced that the current charger could be conditioned to achieve a higher singly charged fraction of particles than that by bipolar chargers in the particle size range of 20–200?nm, particularly in the ultrafine particle size range. The control of Nit product in the charging zone of a unipolar charger offers a simple and effective means to enhance the singly charged fraction of particles in a given size range.

Copyright © 2019 American Association for Aerosol Research  相似文献   

13.
The stream-wise vibration effect of a fibrous filter is studied experimentally and numerically for the purpose of evaluating filtration efficiency. The particle sizes range from 0.02 to 10 μ m and the face velocity ranges from 3 to 10 cm/s. The vibrational peak velocity also varied from 0 to 50 cm/s. The filtration efficiency for this wide size range is obtained by combining the individual test results for fine particles (0.02 to 0.5 μ m) and large particles (0.5 to 10.0 μ m). For the fine particle experiment, Arizona Road Dust (ARD) test particles are generated by an atomizer after an ultrasonic process and measured by a Scanning Mobility Particle Sizer (SMPS). For the large particle experiment, the test particles are generated by a fluidized bed and measured by an Aerodynamic Particle Sizer (APS). When the particles are generated by the atomizer after ultrasonicating, the majority of the particles are in nano scale without the agglomerates on the large particle surface, while particles generated by the fluidized bed are mostly in micro-scale because many nanoparticles are agglomerated on large particle surface. The filtration efficiency increases with the vibrational peak velocity in the impaction-dominant region (D p > 0.1 μ m) and diffusion-dominant region (D p < 0.1 μ m), due to the increased relative velocity between the particle and the filter fiber and the increased diffusion intensity from turbulence around the fiber, respectively. A model for the filter vibration effect is established with a modified Stokes number for the impaction-dominant region and an empirical analysis for the diffusion-dominant region.  相似文献   

14.
The trajectory of a small particle moving to a bubble surface was analyzed by taking into account the effects of surface charges of the bubble and particle and the short range hydrodynamic interaction near the bubble surface, in a flotation process. The particle trajectories obtained theoretically were in good agreement with those obtained by direct observation. Even if the signs of the surface charges of the bubble and particle were the same, the particle adhered to the bubble surface when the net surface force, that is, the sum of the electrostatic force and the van der Waals force, was attractive. Particle capture efficiency, ηS, per bubble was estimated by trajectory analysis and the flotation efficiency, ηT, was calculated. The values of ηT calculated by the particle trajectory analysis were in reasonable agreement with those obtained experimentally. The dependence of particle diameter on ηT was also examined by the particle trajectory analysis.  相似文献   

15.
Positron emission particle tracking (PEPT) has been combined with high speed digital imaging to track a particle within a foam column. The tracer was sufficiently large (diameter 2.5 mm) to allow visual verification of the tracer trajectory recorded with PEPT. This enables validation of the technique for use with smaller, less visible, tracers in the future. A difference in recording rates of PEPT and the high speed camera necessitated the use of a weighting function to interpolate the discrete PEPT data set into a continuous function. A kernel width of 200 ms was used to ensure a confidence level of 95% that the tracer position calculated from PEPT and measured visually were the same, within error limits of ±2.7 mm. The largest contribution to the error was the resolution of the images. Images of dynamic foam structure can now be paired with PEPT measurement to observe the tracer trajectory relative to individual bubbles.  相似文献   

16.
The P-trak ultrafine particle counter is a portable version of a condensation particle counter (CPC). Both instruments detect particle number concentrations in real time but have different detection limits. The P-trak has been widely used for indoor air quality evaluation and aerosol research. However, there is very limited information about the reliability and precision of this instrument and its comparability with other similar instruments. The purpose of this study was to compare a P-trak ultrafine particle counter with a standard CPC and evaluate its applicability to ambient air monitoring.

This study was carried out near the Interstate 405 freeway (I-405) in Los Angeles. Measurements were made at increasing distances from the freeway on both sides at night as well as inside and outside of two 2-bedroom apartments located near the freeway. A CPC and a Scanning Mobility Particle Sizer (SMPS) were collocated with two P-traks and measurement results compared.

In general, higher correlations were observed between P-trak and CPC data for indoor measurements than outdoor. The highest P-trak and CPC correlation ( r 2 = 0.9385) was detected inside Apartment 2, which is located farther away from the freeway than Apartment 1. The poorest correlation occurred at 30 m downwind from the freeway. In that case, the P-trak reported about 25% of ultrafine particle concentration that CPC did. A sigmoid (S-shape) function was fitted to observed P-trak to CPC ratios and geometric mean diameters of the corresponding ultrafine particle size distributions. Overall, we concluded the P-trak worked reasonably well when sampled indoor air. However, it has significant limitations in detecting freshly emitted ultrafine particles from vehicles. The P-trak underestimated ultrafine particles especially for particles smaller than its activation size which was found to be approximately 25–30 nm. Caution must be given in interpreting data collected by P-trak monitors near combustion sources.  相似文献   

17.
Hybrid particles of polyurethane (PU) containing a number of small poly(methyl methacrylate) (PMMA) nanoparticles inside were prepared using glycidyl methacrylate (GMA) monomer as a linker between PU and PMMA; the resulting polymers were poly (urethane‐glycidyl methacrylate‐methyl methacrylate) (PUGM). It was found that the average particle size (Dp) of the PU particles decreased by the inclusion of PMMA particles possibly owing to the low‐solution viscosity of PU. However, Dp of the PUGM hybrid particles increased with increasing the number of covalent bonds between PMMA and PU, which might be due to decreasing the amount of ionic groups per PU chain. Subsequently, the tensile properties of the films made of the PUGM hybrid particles were investigated. It was observed that the modulus of the PU films increased upon the addition of PMMA particle because of a filler effect. In addition, it was seen that the modulus of PUGM hybrid films increased further with increasing the number of covalent bonds. This was attributed to “restricted mobility” of PU chains anchored to the PMMA particles. It was also observed that the tensile strength changed only slightly for PUGM particles, suggesting that the PU matrix was probably responsible for the necking behavior of the films. The elongation of the samples was found to depend on both the presence of covalent bonds between the PMMA particles and PU matrix and the reduced mobility of the PU chains anchored to PMMA particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The temperature, supersaturation, seeding procedure, stirring speed and other parameters were varied in crystallization experiments of calcium carbonate performed in aqueous solutions to control size, particle size distribution and morphology of the particles. Particle size information was obtained by focused beam reflectance measurements and the Coulter Counter Multisizer. Crystals of CaCO3 could be crystallized as spherical polycrystalline particles of the vaterite polymorph, needle‐like crystals of aragonite and both cube‐like and novel plate‐like crystals of calcite. Filtration experiments for calcium carbonate, performed at a constant pressure difference of 2 bar, show that spherical particles with a larger size show better filterability and that spheres with a wider size distribution, as a result of high supersaturation and nucleation, give higher average cake resistance values. Comparing different particle morphologies, plate‐like crystals and needle‐like crystals show worse filterability than spherical particles and cube‐like particles. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

19.
Curves of the conversion and particle size versus the time in the preparation of poly(N‐isopropylacrylamide‐co‐dimethylaminoethyl methacrylate) microgel latices by surfactant‐free emulsion polymerization were measured. The copolymerization reactions were rapid, and their rates increased with the dimethylaminoethyl methacrylate (DMAEMA) concentration in the polymerization recipe. Particle formation occurred by a homogeneous nucleation mechanism, in which DMAEMA helped to colloidally stabilize the primary particles. In addition, a strong dependence of the water‐soluble‐polymer (WSP) formation on the DMAEMA concentration was found, and the DMAEMA content in the WSP was significantly higher than that in the microgel particle. A drastic variation of the crosslinking density within the microgel particle during the polymerization process was found through a comparison of the particle size determined by quasi‐elastic light scattering with that determined by transmission electron microscopy. Finally, on the basis of these results, the mechanism of particle formation in this polymerization process was examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 839–846, 2004  相似文献   

20.
Oxide surfaces are covered with hydroxyl groups. In contact with water, positive or negative surface charges can be developed. The surface charge of oxide particles can be fine‐tuned by changing the calcination temperature of the oxides before dispersion in water or by variation of the suspension pH. Strong negative or positive surface charges stabilize a suspension and avoid particle aggregation. Nano‐structured catalysts suspended in water show surface charges different from those of compact TiO2. For spray drying, the cationic or anionic additives used have to be strongly attached via electrostatic forces to the surface of the suspended oxide particles. When noble metal complexes have to be brought to the support surface, the positively or negatively charged complexes must have an opposite charge relative to the surface charge. Zeta potential measurements can solve these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号