首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Silver nanoparticles of mean size 16 nm were synthesized by inert gas condensation (IGC) method. Crystalline structure, morphology and nanoparticles size estimation were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Antibacterial activity of these silver nanoparticles as a function of particles concentration against gram-negative bacterium Escherichia coli (E. coli) was carried out in liquid as well as solid growth media. Scanning electron microscopy (SEM) and TEM studies showed that silver nanoparticles after interaction with E.coli have adhered to and penetrated into the bacterial cells. Antibacterial properties of silver nanoparticles are attributed to their total surface area, as a larger surface to volume ratio of nanoparticles provides more efficient means for enhanced antibacterial activity.  相似文献   

4.
Glasses with compositions (97 – x)[PbF2:GeO2]–3Al2O3xAg2O, with the PbF2:GeO2 ratio equals to 1.5 and x varying from 0 to 3%, form silver surface films after thermal treatment near the glass transition temperature. The NPT molecular dynamics simulations of a glass composition 56.4PbF2–37.6GeO2–3Al2O3–3Ag2O have been performed, where 0, 20, 40, 60, and 100% of the Ag+ ions were reduced to Ag by the fluoride ions. The simulations showed that the silver atoms aggregate into clusters of increasing numbers and sizes as the silver atoms content increases. In addition, the silver atoms diffusion coefficients are at least one order of magnitude larger than the fastest ion in the matrix. These results are consistent with the rapid formation of the metallic surface film observed experimentally.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Nanocomposite glasses containing metallic nanoparticles can be microstructured by electric‐field assisted dissolution of the embedded particles. As reported by Graener and co‐workers on p. 2983, any pattern of the electrode—down to the nanoscale—can be transferred onto the nanocomposite glass, giving 2D metallodielectric microstructures. The cover image shows as the background a regular array of squares with 2 μm periodicity produced using macroporous silicon as an electrode. The insets show the base material, the electrode, a representation of the dissolution process, and an enlarged view of the remaining silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号