首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A kinetic model hss been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reac-tion mechanisms. Rate equstions were derived for depletion of ozone and pollutants in the peroxone oxidation process using ozone and hydrogen peroxide as combined oxidants. Kinetic data obtained experimentally form the hydrogen peroxide-ozone reaction and peroxone oxidstion of nitrohenzene were analyzed by using the proponse rate equations.  相似文献   

2.
废水中氨及甲苯的O3/H2O2氧化降解及其动力学   总被引:5,自引:0,他引:5  
钟理 《化工科技》1999,7(3):28-31
研究了废水中的无机污染物氨和有机污染物甲苯在O3/H2O2 中的氧化降解过程。根据O3/H2O2 反应产生自由基OH·的机理和污染物在O3/H2O2 中的氧化降解过程,推导出污染物被O3/H2O2氧化降解时的动力学模型,实验结果与理论模型相符。  相似文献   

3.
A kinetic model has been developed, taking into account both decomposition of ozone molecules and interactions between ozone and hydrogen peroxide for formation of hydroxyl radical and subsequent reactions. Experiments were carried out at 25°C in the pH range of 3 to 13, indicating that the depletion rate of ozone increases with the concentrations of ozone, hydrogen peroxide and hydroxyl ion, as predicted by the kinetic model. Adverse scavenging reactions, however, also play significant roles at sufficient concentration ratios of hydrogen peroxide to ozone and high concentrations of hydroxyl ion in reducing the depletion rate. Results of this research suggest, that it is most desirable to conduct the peroxone oxidation for pollutant destruction by the hydroxyl radical reaction in alkaline solutions of pH below 11, while maintaining about the same concentration of ozone and hydrogen peroxide.  相似文献   

4.
The use of ozone to degrade aldicarb in water was investigated under different conditions. The oxidation develops through the direct attack of ozone since the presence of hydroxyl radical inhibitors, such as tert-butanol, does not affect the degradation rate of aldicarb. The combination of ozone with hydrogen peroxide does not improve the oxidation rate which also confirms the absence of radical reactions to eliminate aldicarb. However, TOC removal increases 51% in the presence of hydrogen peroxide after 65 min of oxidation. The oxidation rate is strongly affected by the type of device for feeding ozone, which indicates that a fast gas-liquid reaction is taking place. Therefore, mass transfer and chemical reaction steps are important factors in the establishment of the global rate of oxidation. Application of kinetic equations derived from gas absorption theories allows the determination of the rate constant of the direct ozone–aldicarb reaction, which was found to be: k = 3·18 × 1011 exp(–6000/T) m3 mol?1s?1.  相似文献   

5.
This study was conducted to develop a kinetic model of the ozone/UV process by monitoring the trend of in-situ hydrogen peroxide formation. A specifically devised setup, which could continuously measure the concentration of hydrogen peroxide as low as 10 μg/L, was used. The kinetic equations, comprised of several intrinsic constants with semi-empirical parameters (kchain and kR3) were developed to predict the time varied residual ozone and hydrogen peroxide formed in situ along with the hydroxyl radical concentration at steady state,[OH°]ss, in the ozone/UV process. The optimum ozone dose was also investigated at a fixed UV dose using the removal rate of UV absorbance at 254 nm (A254) in raw drinking water. The result showed that the continuous monitoring of hydrogen peroxide formed in situ in an ozone/UV process could be used as an important tool to optimize the operation of the process.  相似文献   

6.
From the application of concepts derived from the gas-liquid absorption film model, the competition between ozone reactions with 72 water emerging or priority contaminants (pharmaceuticals, pesticides, polynuclear aromatic hydrocarbons, etc.) and the initiation steps of the hydroxyl radical decomposition of ozone in ozone alone and combined with hydrogen peroxide oxidation systems has been studied. With this information, the ozone preferential reaction, that is, the ozone direct reaction or the formation of free radicals and the kinetic absorption regime are known. In a second step, the ratio of removal rates of the contaminants studied by reacting with hydroxyl radical and ozone has also been estimated. With this, the way contaminants are preferentially removed (from their reaction with ozone or from the reaction with free radicals) can also be known and, hence, whether or not an ozone advanced oxidation system is convenient to be applied. For instance, most of the contaminants studied in this work at concentrations lower than 50 μgL?1 and hydrogen peroxide at concentrations lower than 50 mgL?1 react with ozone under chemical control regime so that both direct and free radical reactions theoretically compete. However, under chemical control, typical concentration of scavengers present in wastewater or surface water would inhibit the free radical reactions and, at least theoretically, for many contaminants studied here, the direct ozone reaction is the principal removal way. When mass transfer controls the process rate only contaminants with a hydroxyl and ozone rate constant ratio ≥ 1.6x106 M-1s-1 would be preferentially removed through free radical way.  相似文献   

7.
The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4?/HPO42– buffers at constant ionic strength (0.1 M) and between 5 and 35 °C. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism.  相似文献   

8.
Experiments on alachlor degradation by ozonation alone and combined with hydrogen peroxide using different surface waters have been conducted in a reactor bubble column and a kinetic model of the advanced oxidation process has been proposed. Variables studied were the nature of the surface water (four surface waters were treated), pH (3.5–9.7) and hydrogen peroxide to ozone mass ratio at the column inlet (0.1–1.85 g g?1). Data on residence time distribution, rate constants and the absorption kinetic regime were considered to prepare the kinetic model, which was also based on the axial dispersion model of non‐ideal flow. The model gives good predictions of alachlor and hydrogen peroxide conversions and the fraction of dissolved ozone (deviations were lower than ±15%) although it fails, in some cases, to yield accurate estimates of the observed experimental trends of concentrations in water at the reactor column outlet. The calculated results were close to those obtained from the more classical N well‐mixed tanks‐in‐series model (deviations with this model were lower than ±20%). It is concluded that quantitative deviations from experimental observations were likely due to the lack of rate data on ozone reactions with organic matter present in the surface waters investigated. © 2002 Society of Chemical Industry  相似文献   

9.
Performance of ozonation and an ozone/hydrogen peroxide process under a new concept centering on ozonation and/or ozone/hydrogen peroxide processes in sewage treatment processes comprising only physical and chemical processes are discussed, with focus on the removal of matrix organic compounds and emerging contaminants. Matrix organic compounds of filtrated primary sewage effluents were removed to as low as 3.2 mgC/L in the ozone/hydrogen peroxide process at an ozone consumption of around 400 mg/L. Linear relationships between ozone consumption and removal amounts of organic compounds were observed, in which the amounts of ozone required to remove 1 mg of organic carbon were 9.5 and 8.3 mg (2.4 and 2.1 mol-O3/mol-C) in ozonation and the ozone/hydrogen peroxide process, respectively. Ratios of hydroxyl radical exposure to ozone exposure were in the order of 10–9 to 10–8 for ozonation and 10–7 to 10–6 for the ozone/hydrogen peroxide process. Experiments and a kinetic evaluation showed that ozonation and/or the ozone/hydrogen peroxide process have high elimination capability for emerging contaminants, even in primary sewage effluent with the thorough removal of matrix organic compounds. Newly found reaction phenomena, the temporal increase and decrease of dissolved ozone and accumulation of hydrogen peroxide in the early stage of oxidation with the continuous feeding of hydrogen peroxide, were presented. Possible reaction mechanisms are also discussed.  相似文献   

10.
This paper discusses oxidation of toluene and 2,4,6-trinitrotoluene (TNT) by ozone and hydrogen peroxide mixtures (known as peroxone oxidation) at 25[ddot]C. The overall reaction in alkaline solutions is first order with respect to the concentration of dissolved ozone, and is nearly independent of the pollutant concentrations. The oxidation of toluene is one-half order in hydrogen peroxide, and the rate constant changes in proportion to the hydroxyl ion concentration with an exponent of 0.67.

In the pH range of 7 to 9, the TNT destruction rate increases with the hydrogen peroxide and hydroxyl ion concentrations with exponents of 0.104 and 0.15 respectively. It is technically feasible to treat toluene and TNT contaminated waters by the peroxone oxidation process to achieve the residual level of a few parts per billion in treated waters to meet environmental requirements.  相似文献   


11.
The degradation of C.I. Acid Orange 7 by ozone combined with hydrogen peroxide was carried out in a hollow fiber membrane reactor, and batch recirculation mode of aqueous phase was employed. The effect of initial pH, hydroxyl radical scavenger, hydrogen peroxide concentration, liquid recirculation rate, gas flow rate, and gaseous ozone concentration on the decolorization of C.I. Acid Orange 7 was investigated. The results showed that the decolorization of C.I. Acid Orange 7 fits the pseudo-half-order kinetic model. The rate constant increased with the increase of initial pH, hydrogen peroxide concentration, liquid recirculation rate, gas flow rate, and gaseous ozone concentration. The presence of hydroxyl radical scavenger inhibited the decolorization rate by over 50%. The combination of ozone with hydrogen peroxide achieved a higher COD removal efficiency than ozone alone in the membrane reactor.  相似文献   

12.
陈岚  权宇珩 《化工学报》2008,59(4):1028-1031
引言2,4-二氯苯氧乙酸(2,4-D,又名2,4-滴)是一种广泛使用的除草剂[1],应用历史较长,是我国主要的除草剂品种之一,用量也比较大。2,4-D属于苯氧羧酸类除草剂的一种,可有效去除阔叶杂草,目前仍广泛用于农作物除草和草坪养护[2]。2,4-D的水溶性较高,挥发性较低,在自然界中难以生物  相似文献   

13.
The degradation of four phenolic acids by single UV radiation and by the advanced oxidation process constituted by the combination of ozone and UV radiation has been conducted. The phenolic acids, caffeic, p-coumaric, syringic and vanillic, were selected because they are major pollutants which are present in wastewaters from the production of olive oil and from wine distillery plants. In the single photochemical oxidation, the influence of the operating variables is established and the quantum yields for each individual reaction are evaluated by means of a competitive kinetic method. In the combined ozone/UV radiation process, the generation of the hydroxyl radicals improves the degradation rate in comparison to the single oxidations performed: ozonation and UV photodegradation. ©1997 SCI  相似文献   

14.
Pesticide pollution of surface water and groundwater has been recognized as a major problem in many countries because of their persistence in aquatic environment and potential adverse health effects. Among various water and wastewater treatment options, ozonation and ozone-based advanced oxidation processes, such as ozone/hydrogen peroxide, ozone/ultraviolet irradiation, and ozone/hydrogen peroxide/ultraviolet irradiation, are likely key technologies for degrading and detoxifying these pollutants in water and wastewater. In this paper, ozone-based treatment of four major groups of pesticides, namely carbamates, chlorophenoxy compounds, organochlorines, and organophosphates, are reviewed. Degree of pesticide degradation, reaction kinetics, identity and characteristics of degradation by-products and intermediates, and possible degradation pathways are covered and discussed.  相似文献   

15.
1,2–Dichloroethane (DCE) and trichloroethylene (TCE) were used as model compounds to study the oxidation of organic chemicals by ozone/ultraviolet radiation, ozone, and hydrogen peroxide/ultraviolet radiation. It was found that ozone/ultraviolet radiation oxidized both 1,2–dichloroethane and trichloroethylene in batch systems, at pH = 2 (phosphate buffer). At ozone concentrations in the 1 to 5 mg/L range, the reaction was first order in both ozone and substrate. At pH = 2 and initial ozone concentration 2.2–2.6 mg/L, rate constants (k)Q = 25 and 130 M-1sec-1 were observed for the ozone/ultraviolet radiation oxidation of DCE and TCE, respectively. The rat e constants for ozone oxidation of DCE and TCE without ultraviolet radiation were 4.3 and 47 M-1sec-1, respectively.

The higher rate of TCE oxidation implies that direct reaction occurs with the double bond. Finite reaction rate of DCE with ozone, and substantial increases in rate at higher pH imply the participatation of hydroxyl radicals in the oxidation of both compounds. For example, at pH = 7, initial ozone concentration of 2.3 mg/L, the ko for TCE oxidation by ozone/ultraviolet radiation is approximately 500 M?1 sec?1 almost too fast to measure in a batch system.The rate also is increased by increased ultraviolet radiation intensity, and by the presence of hydrogen peroxide, which acts as a catalyst.  相似文献   


16.
文章以气田钻井废水为研究对象,对经过混凝破胶处理后的废水进行臭氧氧化处理,探究了臭氧单独氧化、O3/H2O2氧化、O3/Fe2+氧化去除CODcr的最优处理条件.研究表明:在三种氧化方法中,O3/H2O2氧化具有最好的CODcr去除效果,其最优反应条件为在pH=10,臭氧投加量为0.5 g/h·L双氧水投加量为0.4%,氧化2h后废水的CODcr去除率可达69.1%.  相似文献   

17.
对比了臭氧、臭氧催化氧化、臭氧/双氧水和臭氧/双氧水催化氧化4种工艺深度处理化工废水的效果,结果表明,当进水COD和色度分别为95.7 mg/L和90倍时,4种工艺出水的COD去除率分别为23.66%、26.77%、29.24%、32.97%,色度去除率分别为64.44%、64.44%、82.22%、82.22%,催化剂和双氧水均能小幅强化臭氧氧化效果。连续臭氧氧化可使出水COD降至20 mg/L,同时当臭氧投加量为60 mg/L时,4种工艺出水均具有一定的可生化性,满足后序生化工艺的需求。  相似文献   

18.
This laboratory study was designed to investigate the removal of atrazine (ATZ) and its first main by-products, deethylatrazine (DEA) and deisopropylatrazine (DIA) by O3/H2O2. At least 76% of the oxidation rate of atrazine is due to free radical reactions. At neutral pH and 20°C, an initial hydrogen peroxide concentration of 10−3 M is optimum to reach a maximum oxidation rate of these compounds. Experimental results of oxidation in the presence of high hydrogen peroxide concentrations allow the mass transfer coefficient of ozonation to be determined. This coefficient, reactor flow analysis and kinetic data obtained have been applied to mol balance equations of atrazine, deisopropylatrazine, deethylatrazine, ozone (both in the gas and water) and hydrogen peroxide to obtain their corresponding concentrations at different conditions. © 1998 SCI  相似文献   

19.
Both the direct ozone reaction and the indirect hydroxyl radical reaction are important in ozonation of drinking water. This article investigates the effectiveness of ozone versus the advanced oxidation process of ozone coupled with hydrogen peroxide in the formation of bromate. The investigation was conducted on a pilot scale at various H2O2:O3 dose ratios of 0.1, 0.2, and 0.35 at different times of the year. The results of this study show a reduction in bromate with the addition of hydrogen peroxide to an ozone system versus ozone alone. It was also observed that bromate increased with increased H2O2:O3 ratios; however, concentrations were still lower than those in the ozone only system.  相似文献   

20.
Benzene (B) and two representative chlorobenzenes (1,4-dichlorobenzene (DCB) and 1,2,3-trichlorobenzene (TCB)) were oxidized by means of UV irradiation alone, ozone alone, and the combinations UV/H2O2 and O3/H2O2. In the single photolytic process, the influence on the photodegradation of the pH, temperature, and type of radiation source used was established. A kinetic study was performed by evaluating the first-order rate constants and the quantum yields. The effect of the additional presence of hydrogen peroxide was pointed out in the combined process UV/H2O2,with the determination of the specific contribution of the radical pathway to the overall photodegradation system. In the oxidation by ozone based systems (ozone alone and the combination O3/H2O2), the rate constants at 20°C for the reaction of each compound with ozone and hydroxyl radicals were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号