首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
2.
3.
Uncontrollable Li dendrite growth and low Coulombic efficiency severely hinder the application of lithium metal batteries. Although a lot of approaches have been developed to control Li deposition, most of them are based on inhibiting lithium deposition on protrusions, which can suppress Li dendrite growth at low current density, but is inefficient for practical battery applications, with high current density and large area capacity. Here, a novel leveling mechanism based on accelerating Li growth in concave fashion is proposed, which enables uniform and dendrite‐free Li plating by simply adding thiourea into the electrolyte. The small thiourea molecules can be absorbed on the Li metal surface and promote Li growth with a superfilling effect. With 0.02 m thiourea added in the electrolyte, Li | Li symmetrical cells can be cycled over 1000 cycles at 5.0 mA cm?2, and a full cell with LiFePO4 | Li configuration can even maintain 90% capacity after 650 cycles at 5.0 C. The superfilling effect is also verified by computational chemistry and numerical simulation, and can be expanded to a series of small chemicals using as electrolyte additives. It offers a new avenue to dendrite‐free lithium deposition and may also be expanded to other battery chemistries.  相似文献   

4.
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

5.
6.
The development of effective approaches for preparing large‐area, self‐standing, ultrathin metal‐based nanosheets, which have proved to be favorable for catalytic applications such as water electrolysis, is highly desirable but remains a great challenge. Reported herein is a simple and versatile strategy to synthesize ultrathin Co3O4 and CoP NSs consisting of close‐packed nanoparticles by pyrolyzing cobalt(II) phthalocyanine/graphene oxide (CoPc/GO) assemblies in air and subsequent topotactic phosphidation while preserving the graphene‐like morphology. The strong π–π stacking interactions between CoPc and GO, and the inhibiting effect of the tetrapyrrole‐derived macrocycle for grain growth during the catalytic carbon gasification contribute to the NSs forming. The resulting homologous Co3O4 and CoP NSs display outstanding catalytic activity in alkaline media toward the oxygen evolution reaction and the hydrogen evolution reaction, respectively, ascribed to the richly exposed active sites, and the expedited electrolyte/ion transmission path. The integrated asymmetrical two‐electrode configuration also presents a superior cell voltage of 1.63 V at 10 mA cm?2 for overall water splitting, accompanied with the excellent durability during long‐term cycling. Further evidences validate that this strategy is appropriate to fabricate graphene‐like ultrathin NSs of many other metal oxides, such as Fe2O3, NiO, MoO3, and mixed‐metal oxides, for various applications.  相似文献   

7.
A unified approach for parameter identification of a visco‐poroplastic material model is presented. A repressing powder forging process is analyzed. The numerical solutions for direct and inverse problems have been described. The inverse problem is solved by the use of gradient‐based methods and a sensitivity analysis. Numerical examples of the method proposed are presented, in which one and two parameters of the visco‐poroplastic material model were identified. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
12.
Micro‐ to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro‐ to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave‐induced forces for on‐chip production of EGaIn liquid‐metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid‐metal‐based systems for a wide range of applications.  相似文献   

13.
Hybrid polymer‐plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long‐range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal‐enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire‐related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position‐dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble‐averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire‐enhanced MEF effects associated to them, are highly relevant for developing nanoscale light‐emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.  相似文献   

14.
15.
Transition metal oxides are complex electronic systems that exhibit a multitude of collective phenomena. Two archetypal examples are VO2 and NdNiO3, which undergo a metal–insulator phase transition (MIT), the origin of which is still under debate. Here this study reports the discovery of a memory effect in both systems, manifested through an increase of resistance at a specific temperature, which is set by reversing the temperature ramp from heating to cooling during the MIT. The characteristics of this ramp‐reversal memory effect do not coincide with any previously reported history or memory effects in manganites, electron‐glass or magnetic systems. From a broad range of experimental features, supported by theoretical modelling, it is found that the main ingredients for the effect to arise are the spatial phase separation of metallic and insulating regions during the MIT and the coupling of lattice strain to the local transition temperature of the phase transition. We conclude that the emergent memory effect originates from phase boundaries at the reversal temperature leaving “scars” in the underlying lattice structure, giving rise to a local increase in the transition temperature. The universality and robustness of the effect shed new light on the MIT in complex oxides.  相似文献   

16.
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.  相似文献   

17.
Plasma‐induced pattern formation is explored on polyethylene terephthalate (PET) using an oxygen plasma glow discharge. The nanostructures on PET are formed through preferential etching directed by the co‐deposition of metallic elements, such as Cr or Fe, sputtered from a stainless‐steel cathode. The local islands formed by metal co‐deposition have significantly slower etching rates than those of the pristine regions on PET, generating anisotropic nanostructures in pillar‐ or hair‐like form during plasma etching. By covering the cathode with the appropriate material, the desired metallic or polymeric elements can be co‐deposited onto the target surfaces. When the cathode is covered by a relatively soft material composed of only carbon and hydrogen, such as polystyrene, nanostructures typically induced by preferential etching are not observed on the PET surface, and the surfaces are uniformly etched. A variety of metals, such as Ag, Cu, Pt, or Si, can be successfully co‐deposited onto the PET surfaces by simply using a cathode covered in the desired metal; high‐aspect‐ratio nanostructures coated with the co‐deposited metal are subsequently formed. Therefore this simple single‐step method for forming hetero‐nanostructures—that is, nanoscale hair‐like polymer structures decorated with metals—can be used to produce nanostructures for various applications, such as catalysts, sensors, or energy devices.  相似文献   

18.
To obtain a supercapacitor with a remarkable specific capacitance and rate performance, a cogent design and synthesis of the electrode material containing abundant active sites is necessary. In present work, a scalable strategy is developed for preparing 2D‐on‐2D nanostructures for high‐energy solid‐state asymmetric supercapacitors (ASCs). The self‐assembled vertically aligned microsheet‐structured 2D nickel pyrophosphate (Ni2P2O7) is decorated with amorphous bimetallic nickel cobalt hydroxide (NiCo‐OH) to form a 2D‐on‐2D nanostructure arrays electrode. The resulting Ni2P2O7/NiCo‐OH 2D‐on‐2D array electrode exhibits peak specific capacity of 281 mA hg?1 (4.3 F cm?2), excellent rate capacity, and cycling stability over 10 000 charge–discharge cycles in the positive potential range. The excellent electrochemical features can be attributed to the high electrical conductivity and 2D layered structure of Ni2P2O7 along with the Faradic capacitance of the amorphous NiCo‐OH nanosheets. The constructed Ni2P2O7/NiCo‐OH//activated carbon based solid‐state ASC cell operates in a high voltage window of 1.8 V with an energy density of 78 Wh kg?1 (1.065 mWh cm?3) and extraordinary cyclic stability over 10 000 charge–discharge cycles with excellent energy efficiency (75%–80%) over all current densities. The excellent electrochemical performance of the prepared electrode and solid‐state ASC device offers a favorable and scalable pathway for developing advanced electrodes.  相似文献   

19.
Porous nanostructured materials are demonstrated to be very promising in catalysis due to their well accessible active sites. Thermally stable metal‐organic frameworks (MOFs) as hard templates are successfully utilized to afford porous metal oxides and subsequently metal sulfides by a nanocasting method. The resultant metal oxides/sulfides show considerable Brunauer–Emmett–Teller (BET) surface areas, by partially inheriting the pore character of MOF templates. Preliminary investigation on the obtained hierarchically porous CdS for water splitting, as a proof of concept, demonstrates its much higher activity than both corresponding bulk and nanosized counterparts, under visible light irradiation. Given the structural diversity and tailorability of MOFs, such synthetic approach may open an avenue to the synthesis of advanced porous materials for functional applications.  相似文献   

20.
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号