首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Functional hybrids are nanocomposite materials lying at the interface of organic and inorganic realms, whose high versatility offers a wide range of possibilities to elaborate tailor‐made materials in terms of chemical and physical properties. Because they present several advantages for designing materials for optical applications (versatile and relatively facile chemistry, easy shaping and patterning, materials having good mechanical integrity and excellent optical quality), numerous silica or/and siloxane based hybrid organic–inorganic materials have been developed in the past few years. The most striking examples of functional hybrids exhibiting emission properties (solid‐state dye lasers, rare‐earth doped hybrids, electroluminescent devices), absorption properties (photochromic), nonlinear optical (NLO) properties (second‐order NLO properties, photochemical hole burning (PHB), photorefractivity), and sensing are summarized in this review.  相似文献   

3.
4.
The search for new materials for tailor‐made applications and new devices involves not only solid‐state chemists, physicists or materials engineers, but also the area molecular and organo‐metallic chemistry, and even biochemistry. This is especially clear in the field of organic–inorganic multifunctional materials, whose design necessitates to investigate new concepts and principles developed in these different disciplines. Here, the authors review the structure‐magnetic property relationships in layered structures, made of organic and inorganic subunits.  相似文献   

5.
6.
7.
8.
9.
This article focuses on the synthetic approach to the preparation of calcium carbonate–organic hybrid materials, which are obtained by self‐organization processes under mild conditions. In these processes, organic molecules such as functionalized polymers and aligned amphiphilic molecules on the surface play key roles in the crystallization of calcium carbonate, which results in the formation of hybrid materials. As well as being environmentally benign, the hybrid materials have controlled morphology and unique properties. Materials scientists have obtained the ideas for the design of such hybrid materials from biominerals such as shells, teeth, and bones.  相似文献   

10.
Polyoxometalates (POMs) have shown encouraging antitumor activity. However, their cytotoxicity in normal cells and unspecific interactions with biomolecules are two major obstacles that impede the practical applications of POMs in clinical cancer treatment. Derivatization of POMs with more biocompatible organic ligands is expected to cause a synergetic effect and achieve improved bioactivity and biospecificity. Herein, the synthesis of an amphiphilic organic–inorganic hybrid is reported by grafting a long‐chain organoalkoxysilane lipid onto a POM. The amphiphilic POM hybrid could spontaneously assemble into the vesicles and exhibits enhanced antitumor activity for human colorectal cancer cell lines (HT29) compared to that of parent POMs. This detailed study reveals that the amphiphilic nature of POM hybrids enables the as‐formed vesicles to easily bind to the cell membranes and then be uptaken by the cells, thus leading to a substantial increase in antitumor activity. Such prominent antitumor action is mostly accomplished via cell apoptosis, which ultimately results in cell death. Our finding demonstrates that novel POM hybrids‐based drugs with increased bioactivity could be obtained by decorating POMs with selective organic ligands.  相似文献   

11.
12.
Advanced nanoarchitectures can be achieved by covalent linking of dendrimeric modules into porous networks using sol–gel chemistry. The focus of this work lies in the conversion of second, third, and fourth generation carbosilane dendrimers to high surface area xerogels and aerogels, and the use of these materials as catalyst supports. By varying the hydrolysis solvent and dendrimeric precursor employed, the properties of the nanoarchitectures can be easily tuned. In particular, triethoxysilyl‐terminated dendrimers have been hydrolyzed in solvents of varying polarity with acid catalysts to produce micro‐ and mesoporous hybrid dendrimer xerogels and aerogels with a controllable degree of Si–OH functionality.  相似文献   

13.
14.
Forming two structurally different but associated polymer structures in a single step is a possible route for the production of nanostructured materials. By means of twin polymerization of specially constructed monomers consisting of two different covalently bonded building blocks (hybrid monomers), this route is realized. What is important is that two different macromolecular structures are formed from one monomer in a single process. The two polymers formed can be linear, branched, or cross‐linked structures. The molecular composition of the hybrid monomer defines the degree of cross‐linking of the corresponding macromolecular structures that is theoretically possible.  相似文献   

15.
16.
17.
18.
Progress reports are a new type of article in Advanced Materials, dealing with the hottest current topics, and providing readers with a critically selected overview of important progress in these fields. It is not intended that the articles be comprehensive, but rather insightful, selective, critical, opinionated, and even visionary. We have approached scientists we believe are at the very forefront of these fields to contribute the articles, which will appear on an annual basis. The article below describes the latest advances in bio‐inspired materials chemistry.  相似文献   

19.
Progress reports are a new type of article in Advanced Engineering Materials, dealing with the hottest current topics, and providing readers with a critically selected overview of important progress in these fields. It is not intended that the articles be comprehensive, but rather insightful, selective, critical, opinionated, and even visionary. We have approached scientists we believe are at the very forefront of these fields to contribute the articles, which will appear on an annual basis. The article below describes the latest advances in Bio‐inspired Materials Chemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号