首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对非最小相位系统的跟踪问题,提出了一种新的基函数迭代学习控制算法.该算法利用新型的非因果Laguerre扩展基函数逼近系统逆传递函数,设计最优迭代学习律使系统输入收敛到系统的稳定逆,保证了控制性能.算法不依赖于系统的先验模型,仅需以基函数信号作为系统输入进行模型辨识,减少了模型不确定性的影响.通过对单连杆柔性机械臂这样的典型非最小相位系统跟踪问题的仿真,验证了该方法的良好效果.  相似文献   

2.
针对迭代学习控制在非最小相位系统上应用效果差的缺点,根据最优化性能指标和非因果的稳定逆理论,提出了一种基于稳定逆的最优开闭环综合迭代学习控制,分析了学习律的收敛性并给出了此种非因果的学习律在实际应用中的运用方式.  相似文献   

3.
讨论非线性非最小相位系统实现完全跟踪的迭代学习控制方法, 适于在有限作业区间上重复运行的受控系统. 在控制器设计时, 通过输出重定义以使非最小相位系统的零动态变成渐近稳定特性. 分别采用部分限幅和完全限幅两种学习算法设计控制器, 理论分析表明两种算法能够保证学习系统中所有变量的有界性和跟踪误差在整个作业区间上渐近收敛于零. 数值仿真验证了两种迭代学习控制系统的跟踪性能.  相似文献   

4.
针对一类非最小相位的非线性系统,通过引入一个近似系统,提出了一种简单的间接自适应控制方法,并分析了采用该方法后系统输出的跟踪性能,给出了输出跟踪误差的上限.该方法可克服现有的非线性自适应控制方法只能控制最小相位的非线性系统并且容易产生过度控制的缺点.  相似文献   

5.
一类非最小相位非线性系统的直接自适应控制韩存武,袁少强,马晓军,文传源(北京航空航天大学自控系北京100083)关键词:非线性系统,自适应控制,非最小相位系统.1引言非线性系统的自适应控制作为当前自动控制领域最富有挑战性、同时也最困难的前沿课题之一越...  相似文献   

6.
提出了一种基于线性代数方程组约束和梯度法的非最小相位FIR系统的自适应辨识算法.选用的线性方程组具有列满秩的系数矩阵,保证了系统参数的唯一可识别性.由于只采用高阶累量,故能够抑制任何高斯有色噪声的影响.重点讨论了梯度法中步长的选择,提出了收敛速度最快的变步长.仿真实验的结果证实了算法的有效性.  相似文献   

7.
一类非线性非最小相位系统的直接自适应控制   总被引:1,自引:0,他引:1  
针对一类不确定的离散时间非线性非最小相位动态系统,提出了一种基于神经网络和多模型的直接自适应控制方法.该控制方法由线性直接自适应控制器,神经网络非线性直接自适应控制器以及切换机构组成.线性控制器用来保证闭环系统输入输出信号有界,非线性控制器用来改善系统性能.切换策略通过对上述两种控制器的切换,保证闭环系统输入输出有界的同时,改善了系统性能.理论分析以及仿真结果表明了所提出的直接自适应控制方法的有效性.  相似文献   

8.
非最小相位系统的加权预测控制   总被引:1,自引:0,他引:1  
广义预测控制(GPC)算法对非最小相位系统具有一定的鲁棒性,但理论分析和应用经验都表明,控制参数在极限情况下还不能保证GPC算法对非最小相位系统的强鲁棒性.本文对此提出一种改进的加权预测控制算法.  相似文献   

9.
非最小相位系统的MRAC方案及应用   总被引:2,自引:0,他引:2  
基于POPOV超稳定理论,设计了一种适合非最小相位系统的模型参考自适应控制(MRAC)方案。采用从模型取状态技术,增加系统对噪声的鲁棒性。采用可调线性补偿器,不需系统参数变化范围已知的假定条件。在模型中增加了可调零点,抵消对象的非最小相零点的作用,保证了MRAC系统的全局渐近超稳定性。  相似文献   

10.
非正则线性系统的闭环P型迭代学习控制   总被引:3,自引:0,他引:3  
迭代学习控制是改善具有重复运行性质过程的跟踪性能的有效方法。开环迭代学习控制学习周期长,在迭代学习的初期容易出现不稳定和高增益的现象。对非正则系统的迭代学习控制,需要采用高阶微分学习律。该文针对一类非正则线性定常连续系统,讨论了闭环P型迭代学习控制律,给出并证明了闭环P型迭代学习控制律的收敛性条件的两个定理,解决了非正则系统的P型迭代学习控制问题。仿真实例说明闭环迭代学习律的有效性和快速性。  相似文献   

11.
Iterative Learning Control Using Adjoint Systems and Stable Inversion   总被引:1,自引:0,他引:1  
In this paper, we investigate iterative learning control (ILC) for non‐minimum phase systems from a novel viewpoint. For non‐minimum phase systems, the magnitude of a desiredinput obtained by ILC using forward‐time updating and Silverman's inversion are too large because of the influence of the unstable zeros. On the other hand, stable inversion constructs a bounded desired input by using non‐causal inverse for non‐minimum phase systems. In this paper, we first clarify that ILC using an adjoint system achieves the desired input defined by stable inversion. Hence, ILC using an adjoint system is an effective method for the control of non‐minimum phase systems with uncertainty. However, a useful convergence condition of ILC using an adjoint system was not achieved. Next, we develop a simple convergence condition in the frequency domain.  相似文献   

12.
研究任意初态下,机器人系统的有限时间自适应迭代学习控制方法。引入初始修正吸引子的概念,构造一个含有初始修正项的误差变量。针对定常机器人系统和时变机器人系统,采用Lyapunov-like方法,分别设计迭代学习控制器处理系统中不确定性。并且,采用未含/含限幅学习机制,保证闭环系统各变量的一致有界性和误差变量在整个作业区间一致收敛性。藉以实现跟踪误差在预先指定区间的完全跟踪。仿真结果验证所设计控制方法的有效性。  相似文献   

13.
非线性非最小相位系统的控制研究综述   总被引:1,自引:0,他引:1  
非线性非最小相位系统是指具有不稳定零动态或内部动态的非线性系统, 其本身固有的非最小相位特性限制了许多常规非线性控制方法(如反推控制、反馈线性化、滑模控制等)的直接应用. 因此, 非最小相位系统的控制比最小相位系统要困难得多, 是控制理论与工程应用中具有挑战性的课题之一. 本文综述了目前非线性非最小相位系统的研究成果, 着重介绍了非最小相位系统的成因、特性、 理想内模求解等问题, 并对其镇定、轨迹跟踪及路径跟踪等控制方法进行了分析比较. 最后, 讨论了非线性非最小相位系统研究领域中尚存在的问题, 并对其未来发展方向进行了展望.  相似文献   

14.
An adaptive control using fuzzy basis function expansions is proposed for a class of nonlinear systems in this paper. It is shown that two system uncertainty bounds are approximated in a compact set by using fuzzy basis function expansion networks in the Lyapunov sense, and the outputs of the fuzzy networks are then used as the parameters of the controller to adaptively compensate for the effects of system uncertainties. Using this scheme, not only strong robustness with respect to unknown system dynamics and nonlinearities can be obtained, but also the output tracking error between the plant output and the desired reference output can be guaranteed to asymptotically converge to zero. Simulation results are provided to demonstrate the effectiveness, simplicity and practicality of the proposed control scheme.  相似文献   

15.
In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems. To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control (DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.   相似文献   

16.
非最小相位控制系统的智能设计   总被引:2,自引:0,他引:2  
本文在归纳总结控制工程中大量非最小相位被控制对象特性的基础上,研究了其控制系统的智能设计问题,提出了一种非最小相位控制系统的智能设计方法,并以此设计了柔性结构姿态控制系统,证实了本文的设计方法能同时满足系统的稳定性,鲁棒性,静态动态性能,以及控制器的简单性和控制器本身的稳定性等方面的要求,在同等条件下比较,优于其它设计方法.  相似文献   

17.
介绍输出概率密度函数(PDF)常规的迭代学习控制(ILC)的收敛条件,并利用此条件设计相应的迭代学习律.主要讨论如何解决输出PDF迭代学习控制(ILC)中的过迭代,收敛速度等问题.以离散输出概率密度函教(PDF)控制模型为基础,介绍了直接迭代学习控制算法收敛的必要条件,提出自适应的迭代学习参数调节方法和避免过迭代的迭代结束条件,这些措施能够保证输出PDF的迭代控制收敛且具有较快的收敛速度.仿真结果表明,输出PDF的自适应迭代学习控制具有较快的收敛速度,而学习终止条件能很好地避免过迭代.  相似文献   

18.
陈家旭  赵永进  宋志洪 《软件》2021,42(1):86-91
城市道路交叉口信号控制是交管工作持续关注的课题,关于协调好有限的道路资源与日益增长的交通需求之间的矛盾,有着至关重要的作用。由于道路自身条件约束,交通流的组成特点复杂,路网交通路呈现非线性动态特征,无法进行精准的数学建模控制。本文提出的迭代学习控制方法,根据交通流的组成和变化特点调整信号控制周期及有效绿灯时长,实现交通信号动态优化控制,保证车辆在路网中能够高效、平稳地通行,是针对非线性动态交通流的一种动态寻优控制算法,能够有效减少路口车辆等待时间、提高通行效率。考虑对不同相位设计方案的适应性,在传统配时优化模型的基础上,构建综合相位设计元素的交通信号迭代学习控制模型,并通过Vissim仿真软件和Python编程语言搭建仿真测试环境,验证了提出模型的有效性。  相似文献   

19.
Prediction-based Iterative Learning Control (PILC) is proposed in this paper for a class of time varying nonlinear uncertain systems. Convergence of PILC is analyzed and the uniform boundedness of tracking error is obtained in the presence of uncertainty and disturbances. It is shown that the learning algorithm not only guarantees the robustness, but also improves the learning rate despite the presence of disturbances and slowly varying desired trajectories in succeeding iterations. The effectiveness of the proposed PILC is presented by simulations.  相似文献   

20.
Adaptive feedback based methods in iterative learning control (ILC) have garnered much interest from researchers for some time now. Much as in adaptive feedback control, most of these methods use Lyapunov functions and positive real transfer functions to prove convergence and boundedness of system signals updated through iterative estimations. While Rohrs et al. have motivated further research on the design of robust adaptive feedback controllers by demonstrating in the early 1980's that the algorithms of the time were not robust in the presence of unmodeled dynamics, the topic of robustness has not been studied much in the adaptive iterative learning control (AILC) literature. Inspired by Rohrs' counterexample, we use a model reference AILC scheme to show the lack of robustness to unmodeled dynamics in AILC. We rigorously define the concept of stability in ILC via space concepts, and demonstrate the existence of unstable learning operators. We put forth linear systems arguments to explain how conditions leading to instability can occur, and support heuristic arguments with simulation examples. Our findings indicate that the shortcomings of AILC in terms of robustness are no different than those of adaptive feedback, with the robustness issue more severe in certain cases, and further research is necessary to design robust AILC schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号