首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究玻璃纤维、碳纳米管共掺杂环氧树脂复合材料的绝缘性能,制备了纤维不同掺杂量和排布方式时的玻璃纤维-碳纳米管环氧树脂复合材料,并分别测试了其介电常数、介质损耗因数及交流短时击穿电压,研究了掺杂工艺参数对复合材料绝缘性能的影响。研究发现,玻璃纤维掺杂量在15~20wt%、纤维束间距在1.0~1.2mm时,复合材料介电常数和介质损耗因数均达到最小值,分别为3.63和0.0303;而其交流短时击穿电压在40wt%掺杂量、1.5mm纤维束间距时,达到最大值39.6k V。与单向排布方式相比,正方形网格排布的复合材料击穿电压更高。研究表明,玻璃纤维的引入改善了碳纳米管-环氧树脂复合材料的绝缘性能,玻璃纤维、碳纳米管与环氧树脂之间的界面效应在复合树脂绝缘性能的改善中发挥主要作用。  相似文献   

2.
高分子基体与高导热填料复合的导热绝缘复合材料是解决带电作业机器人等机械设备绝缘防护、电子电气设备散热问题的良好解决方案.本研究采用硅烷偶联剂KH550对微米级氧化铝(A12O3)表面进行修饰,混合高导热的碳纳米管(CNT)作为导热填料,选用耐受温度范围广和耐腐蚀的硅橡胶(SR)作为高分子基体,制备了硅橡胶复合材料,并对其性能进行测试.结果表明:A1203/CNT混合填料总含量在10%,CNT占比为0.3%时,SR复合材料的热导率高达0.268 W/(m·K),相比SR提升了103.1%,体积电阻率为10.5x1012 Ω·cm,相对介电常数几乎不变,邵氏A硬度和杨氏模量略微增大.  相似文献   

3.
采用真空抽滤法制备具有完整多层结构的TEMPO氧化纳米纤维素(TOCN)/氮化硼纳米片(BNNS)复合纳米纸,通过调控填料含量观察并分析复合纳米纸的表面形貌结构及界面相互作用力,测试复合纳米纸的电气强度和导热性能。结果表明:复合纳米纸厚度约为20μm,随BNNS含量增加,复合纸变脆、柔性下降,BNNS质量分数为50%的复合纳米纸综合性能优异,电气强度达23.2 kV/mm,面内、面间导热系数分别为3.07W/(m·K)和0.58 W/(m·K);通过仿真实验发现60℃温差下,复合纳米纸相比纯纤维素纸传热效率提升了267%。  相似文献   

4.
环氧树脂作为电子器件、电机绝缘封装的主要材料,迫切需要提高其导热性能,以满足更苛刻的使用需求。通过采用无规形貌氧化铝(i-Al2O3)填充共混改性环氧树脂,研究不同体积分数i-Al2O3对环氧树脂导热系数及其他性能的影响。结果表明:随着i-Al2O3体积分数的增加,环氧共混物的黏度逐渐增加,拉伸强度先上升后下降,热稳定性逐渐提高,导热性能逐渐增强。当i-Al2O3的体积分数为45%时,环氧复合材料的综合性能良好,其导热系数达到了1.44 W/(m·K),较纯环氧树脂的0.21 W/(m·K)提高了585.7%,并且体积电阻率保持在1014Ω·cm。  相似文献   

5.
针对常规片状氮化硼比表面积大,与环氧树脂复合时会急剧增大树脂黏度的问题,本研究制备了球形氮化硼,并将其作为填料与环氧树脂复合制备了球形氮化硼/环氧复合材料。研究了球形氮化硼/环氧复合材料的制备工艺和固化特性,对比研究了片状/球形氮化硼填料的形貌和填充量对环氧树脂复合材料力学性能和电学性能的影响规律。结果表明:随着反应温度升高,环氧树脂的固化度呈现“S”型曲线变化,整个固化过程可大致分为“慢-快-慢”3个阶段。力学性能方面,加入少量氮化硼可以提高环氧树脂复合材料的力学性能;高填充量时,球形氮化硼/环氧复合材料比片状氮化硼/环氧复合材料具有更优异的力学性能。电气性能方面,环氧树脂复合材料的相对介电常数随填料含量的增加而增大,介质损耗因数均低于0.02;与片状氮化硼/环氧复合材料相比,球形氮化硼/环氧复合材料的“填料-树脂”界面减少,具有更低的相对介电常数和介质损耗因数;添加适量的氮化硼能够显著提高复合材料的体积电阻率和电气强度。  相似文献   

6.
环氧树脂基导热绝缘复合材料的研究进展   总被引:1,自引:1,他引:1  
分析了环氧树脂基导热绝缘复合材料的导热机理,主要从填料的种类、粒径、用量、表面处理及复配等方面综述了环氧树脂基高导热绝缘复合材料的研究进展,并对环氧树脂基导热绝缘复合材料的应用前景及重点研究方向进行了展望.  相似文献   

7.
采用羧基功能化碳纳米管(C–MWNTs)和环氧基功能化碳纳米管(E–MWNTs)改性环氧树脂。利用扫描电子显微镜观察碳纳米管功能化前后的形貌变化,分析碳纳米管/环氧树脂纳米复合材料的冲击断面形貌,测试了复合材料的力学性能和介电性能。结果表明:环氧基功能化碳纳米管与环氧树脂基体作用力更强,当E–MWNTs和C–MWNTs在复合材料中的掺杂量分别达到1.0wt%和0.7wt%时,E–MWNTs/EP复合材料和C–MWNTs/EP复合材料的冲击强度较未掺杂环氧树脂分别提高了52.2%和39.9%,当碳纳米管掺杂量为0.7wt%时,两体系的弯曲强度与未掺杂环氧相比分别提高了35%和26%。探讨了碳纳米管增韧环氧树脂的机理。不同方法处理的碳纳米管对环氧树脂复合材料的介电常数和介电损耗影响程度不同。  相似文献   

8.
玻璃纤维/聚四氟乙烯复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
通过高速混合、冷压烧结成型法用玻璃纤维(GF)填充聚四氟乙烯(PTFE)制备了GF/PTFE复合材料,探讨了GF用量对GF/PTFE复合材料拉伸性能和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对复合材料微观结构进行了分析研究。结果表明:GF质量分数为15%时,复合材料耐磨性能最好,磨耗量不足1.0×10-3g/h,拉伸强度与常规干法混合制备的复合材料相比提高近30%,高速混合工艺使GF均匀分布于PTFE基体中,并可进一步细化PTFE粉料。  相似文献   

9.
采用偶联剂对氧化镁粉体进行表面有机化改性,然后将氧化镁、增塑PA6粉及其他助剂混合,经过双螺杆挤出机制备了导热绝缘PA6复合材料。研究了PA6基复合材料的导热性能、绝缘性能和力学性能与氧化镁含量的关系以及不同粒径的氧化镁复配对PA6基复合材料的导热效果的影响。结果表明:氧化镁含量越高,复合材料的导热率越高,当氧化镁含量为60%时,样品仍然可以注塑成型,并且具有良好的导热性能、绝缘性能和力学性能;采用不同粒径的氧化镁复配,总添加量为60%时,导热绝缘PA6基复合材料的导热系数为1.872 W/(m·K)。  相似文献   

10.
玻璃纤维增强环氧树脂复合材料是国防科技、航天航空、建筑、交通及智能电网自动化等领域的重要材料,具有轻质高强,抗疲劳性能、耐久性能和绝缘性能好等特点。测试了玻璃纤维增强环氧树脂复合材料试样在沿纤维方向和垂直纤维方向的力学性能。结果表明:玻璃纤维增强环氧树脂复合材料呈各向异性,沿纤维方向的力学性能明显优于垂直于纤维方向;材料没有明显的屈服极限,为脆性材料;其综合力学性价比较高,可替代普通钢材,应用范围广泛。  相似文献   

11.
高导热绝缘高分子复合材料的研究进展   总被引:8,自引:5,他引:3  
介绍了高导热绝缘高分子复合材料的导热机理,讨论了影响高导热绝缘高分子材料导热性能的主要因素,阐述了高导热绝缘高分子材料的发展方向。  相似文献   

12.
环氧树脂等高分子聚合物材料热导率低,长期使用时,存在热导致的故障和绝缘失效等隐患.通过向环氧树脂中填充具有高导热性和高绝缘性的微米氮化硼和纳米氧化铝填料制备高导热复合绝缘材料,研究填料填充量及配比对复合材料导热性能和绝缘性能的影响.结果表明:当总填充量为30%,微米h-BN与纳米A12O3的质量比为3∶1时,复合材料的热导率、击穿时间和复介电常数虚部ε"分别为1.182 0W/(m·K)、31.9 s和0.034,比环氧树脂分别提升了697%、21.4%和406%,且复合材料在高频高压电场下具有良好的耐受性能.  相似文献   

13.
采用混酸氧化多壁碳纳米管(MWCNTs),制备了多壁碳纳米管/环氧树脂复合材料。利用扫描电子显微镜(SEM)对处理前后MWCNTs的形貌进行表征,研究MWCNTs的含量对复合材料电性能的影响。结果表明:随着MWCNTs含量的增加,复合材料的体积电阻率下降,材料的介电常数和介质损耗有不同程度的上升。  相似文献   

14.
通过化学共沉淀法制备了不同比例的NiO/多壁碳纳米管(MWCNTS)复合材料,用X射线粉末衍射(XRD),透射电子显微镜(TEM)技术分析了该复合材料的物相结构及微观形貌,在复合材料中,检测到的NiO衍射峰与JCPDS标准卡片(No.02-1216)相符,而且NiO纳米粒子和多壁碳纳米管进行了较均匀地复合,并对其电化学性能进行了测试,结果表明:当复合材料中NiO含量为55%时,该复合材料作为电极,经30次循环后,放电容量仍能维持在820 mAh/g以上,远高于纯化后的多壁碳纳米管或纯NiO单独作为电极的放电容量,而且表现出良好的循环性能.  相似文献   

15.
电子封装用复合导热绝缘环氧胶粘剂的研制   总被引:8,自引:5,他引:3  
以环氧树脂E-44为基体,通过加入不同量和种类的导热绝缘填料氮化硅、氮化硼、氧化铝、碳化硅来调节胶粘剂的导热性能,通过加入不同量的增塑剂来调节胶粘剂的粘度和韧性以适应于工业化涂布生产.重点研究了胶粘剂的粘度、导热性等性能与配方之间的关系,确定了一种适合于工艺生产、综合性能良好的电子封装用导热绝缘环氧胶粘剂.当复合填料中氮化硅、氧化铝、氮化硼的质量分数分别为环氧树脂基体的25%、25%、10%时,体系的导热率最高为2.66W/m·K,为纯环氧树脂基体的11.6倍.  相似文献   

16.
首先以六方氮化硼(h-BN)微粉及绢云母微粉(Mica)为原料,通过冻融循环结合超声工艺剥离出氮化硼纳米片(BNNS)及云母纳米片(MNS);之后以BNNS和MNS为绝缘导热填料,采用原位聚合法及二步法的水性聚酰亚胺(PI)工艺,制备了云母/氮化硼纳米杂化聚酰亚胺薄膜(简称为MNS/BNNS纳米杂化PI薄膜).研究了不同MNS/BNNS填充量对纳米杂化PI薄膜性能的影响,采用XRD、TEM、AFM对BN、BNNS、Mica、MNS的形貌、结构进行了表征,并测定了MNS/BNNS纳米杂化PI薄膜的导热系数、介电常数及电气强度等性能.结果表明:当m(MNS)∶m(BNNS)=1∶2时,纳米杂化PI薄膜具有较好的综合性能,导热性能比纯PI大幅提高,导热系数为0.743 W/(m·K),电气强度可达246 MV/m,介电常数为5.28.  相似文献   

17.
18.
等离子体表面改性玻璃纤维增强的环氧树脂性能研究   总被引:1,自引:0,他引:1  
本文基于水轮发电机定子绝缘材料的性能,采用介质阻挡放电在空气中大气压下对无碱玻璃纤维进行表面改性实验,考察改性时间对玻璃纤维表面形貌及化学组成成分变化的影响。其次,用不同处理时间下的玻璃纤维掺杂双酚A型环氧树脂,并制备成复合材料,分别测试了复合材料的拉伸、弯曲等力学参数,对比分析低温等离子体改性时间对复合材料力学性能的影响。实验结果表明,经等离子体处理180s后,玻璃纤维表面出现许多刻蚀坑,并且引入了O-C=O含氧官能团,O-C=O基团含量从未处理的0%上升到7.9%,而复合材料的拉伸、弯曲强度也分别提高了30.97%、37.5%。分析表明,低温等离子体的化学刻蚀作用引起的玻璃纤维表面形貌的变化,以及表层极性基团的引入,是玻璃纤维表面活化处理中的主导过程。采用等离子体表面活化后的玻璃纤维增强环氧树脂,可以使复合材料的力学性能得到显著提高。  相似文献   

19.
在BN/环氧树脂混合料的固化过程中施加不同直流电场制备了纳米BN取向程度不同的环氧复合材料,研究不同电场强度对BN纳米片取向程度的影响,同时探讨BN纳米片取向程度对环氧复合材料热导率和电性能的影响。结果表明:随着直流电场强度的增大,BN纳米片的取向与电场方向更相近,环氧复合材料的热导率得到提升,介电常数和电导率增大。通过调控BN纳米片的分布取向,实现了环氧复合材料导热性能和绝缘性能的协同提升。  相似文献   

20.
导热绝缘材料是保障微电子设备、电力装备工作效率和稳态运行必不可少的部分,但随着设备功率的提高,目前主流的硅基材料难以满足高集成技术、微电子封装、大功率电力装备等关键技术对材料导热、绝缘以及力学性能的要求,亟待开发下一代导热绝缘材料。聚合物基导热绝缘材料因其优异的绝缘、导热和机械延展等优异特性而被广泛关注,该文主要以聚合物基复合材料内部结构对导热、绝缘及力学性能的影响为基础,分析总结填料种类、含量、填料尺寸以及填料的复合网络对聚合物热导率的影响规律,并对复合材料的结构设计方法及在各领域的应用现状进行全面梳理与总结,为高导热绝缘复合材料的设计与性能优化提供指导,推动其规模化应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号