首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hot Dates     

The results of an analytic investigation on the influence of the thermal conductance of a sorption element (adsorber/desorber), evaporator, and condenser on the performance of a three-bed silica-gel-water adsorption chiller are presented with consideration given to the thermal capacitance ratio of the adsorbent and metal of the adsorber/desorber heat exchanger. The analysis was performed by using a cycle-simulation model developed by the authors. The chiller is driven by exploiting waste heat at a temperature 60 and 95°C with a cooling source at 30°C for air conditioning purpose. The results show that the cycle performance is strongly affected by the thermal capacitance ratio and sorption element thermal conductance due to several sensible heating/cooling requirements resulting from batched cycle operation. The model is somewhat sensitive to the thermal conductance of the evaporator, and the thermal conductance of the condenser is the least sensitive parameter.  相似文献   

2.
《Energy》1997,22(4):437-447
We present results of an analytic investigation on the influence of the thermal conductance of sorption elements (adsorber/desorber, evaporator and condenser) on the performance of a silica-gel-water advanced adsorption chiller, with consideration of the thermal capacitance ratio of the adsorbent and metal of the adsorber/desorber heat exchanger. The analysis was performed by using a cycle-simulation model developed by us and a coworker. The chiller is driven by exploiting waste heat at a temperature 50°C with a cooling source at 30°C for air-conditioning and refrigeration purposes. The results show that the cycle performance is strongly affected by the thermal capacitance and adsorber/desorber thermal conductance due to severe sensible heating/cooling requirements resulting from batched cycle operation. The model is somewhat sensitive to the thermal conductance of the evaporator. The thermal conductance of the condenser is the least sensitive parameter, as the adsorption behavior of the adsorbent/adsorbate pair at a fixed temperature is defined for desorption and condensation.  相似文献   

3.
The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32–40 °C has been controlled, while the inlet return air temperature is kept constant at about 26 °C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40 °C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes.  相似文献   

4.
In this study, the two‐phase heat‐transfer coefficient of R404A inside horizontal tubes is analyzed through the evaporator's overall heat‐transfer coefficient, obtained using the effectiveness—Number of Transfer Units thermal design approach. This method constitutes an approximation that can be used in the evaporator's thermal design with an attempt to break some of the initial assumptions established in the heat exchanger thermal design method development. For the analysis, an experimental refrigeration system that is commercially available is built up with a shell and tube evaporator. All the experiments are performed at different evaporator pressures (270, 570 kPa), evaporator temperatures (?20, 0°C) and cooling water temperatures (20, 40°C). For these parameters, overall heat‐transfer coefficient of the heat exchanger is found in the range of 0.05–0.35 kW °C?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Sorption heat pipe (SHP) combines the enhanced heat and mass transfer in conventional heat pipes with sorption phenomena in the sorbent bed. SHP consists of a sorbent system (adsorber/desorber and evaporator) at one end and a condenser + evaporator at the other end. It can be used as a cooler/heater and be cooled and heated as a heat pipe. SHP is suggested for space and ground application, because it is insensitive to some “g” acceleration. This device can be composed of a loop heat pipe (LHP), or capillary pumped loop (CPL) and a solid sorption cooler. The most essential feature is that LHP and SHP have the same evaporator, but are working alternatively out of phase. SHP can be applied as a cryogenic cooler, or as a fluid storage canister. When it is used for cryogenic thermal control of a spacecraft on the orbit (cold plate for infrared observation of the earth, or space), or efficient electronic components cooling device (lased diode), it is considered as a cooler. When it is applied as a cryogenic storage system, it insures the low pressure of cryogenic fluid inside the sorbent material at room temperature.  相似文献   

6.
The Refractance Window® evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m?2 °C?1. Under this condition, the highest evaporation capacity was 27.1 kg h?1 m?2 for blueberry juice and 31.8 kg h?1 m?2 for blueberry puree. The energy consumption was 2492–2719 kJ kg?1 of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h?1 m?2 and 733 W m?2 °C?1, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The current paper describes the design of a prototype system to explore the feasibility of the adsorption thermal energy storage. Water was chosen as the adsorbate, and three different adsorbents were tested. Zeolite 13X, NaLSX zeolite, and an activated alumina (AA)/zeolite 13X composite adsorbent were used as adsorbents. Experiments were performed at varying flow rates and different relative humidities to determine the optimal operating conditions for the system. The regeneration of the adsorbents also was explored by performing repeated runs on the same adsorbent sample. The results indicate that complete regeneration was achieved. A maximum energy density of 160 kWh/m3 has been achieved with the AA/13X adsorbent, and this adsorbent was chosen for further studies. After this adsorbent screening, the system was modified to improve the data recording and system performance. Tests were performed on AA/13X, and a maximum energy density of 200 kWh/m3 was achieved, which was much higher than the maximum energy density reported in the literature for adsorption thermal energy storage systems (165 kWh/m3). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The present study uses basic thermodynamic relationships capable of assisting in the design of a solar refrigerator for agricultural products refrigeration. The data used for calculation are daily average meteorological data collected over a period of five years in Hun city in Lybia, taking 1988 as a reference year and 2000 to 2003 for comparison. The investigated adsorption refrigeration cycle consists mainly of generator, condenser, evaporator and adsorber. The adsorption refrigeration cycle is assumed to be accomplished by the removal of heat through the evaporator at low pressure and heat rejection through the condenser at high pressure. The products refrigeration requires a temperature from 2 to 8°C. In these calculations, however, a temperature range from 0 to 8°C was taken into account in order to cover any losses. The calculations resulted in an average generator energy, Qg, of 4.59 kWh/m2 per day, an average ammonia consumption, ma, of 0.0279 mass of ammonia per unit mass of activated carbon. The average coefficient of performance, COP, for the reference year was 0.555 and remained almost constant at 0.530 in the comparison years. The average evaporation energy Qe, was 2.460 kWh/m2 per day for the reference year and did not change in comparison years.  相似文献   

9.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Experiments and numerical simulations were conducted for evaluating measures for enhancing adsorption capacity and heat conducting of an on board MOFs hydrogen storage system by cryo-adsorption. Solvothermal method was employed to synthesize MIL-101(Cr) composite by incorporating activated carbon. The composite was undergone structure characterization, structural morphology observation, thermal conductivity measurement and measurement of isotherm of hydrogen adsorption at 77.15 K within 0–6 MPa. Effect of adding expanded natural graphite (ENG) and equipping a honeycomb heat exchanging device (HHED) on mitigating the thermal effect on a 0.5 L hydrogen storage vessel packed with composite was investigated within a flow rate of hydrogen required by a ship's power unit. It shows that the sample incorporated by 1 wt% activated carbon respectively obtained about 14.5%, 26.2% and 5.7% increment in specific surface area, micropore volume and the maximum excess adsorption amount. Results also reveal that, within the flow rate 5 L·min?1-25 L min?1, the mean relative error between the experimental data and those from simulations is less than 1.61%, and the reduction in temperature fluctuation of the storage system is about 5 °C and 4 °C on charge and discharge process while equipping the HHED, which accordingly brought about 17%, 24.3%, 18.5% increment in accumulated amount of charge and discharge as well as the useable capacity ratio (UCR) of the system. It suggests that equipping a HHED is a more promising method for weakening the thermal effect on MOFs-hydrogen storage systems.  相似文献   

12.
This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle.In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s?1 to 2 m s?1. Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and ?45° (condenser below the evaporator).Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (?45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage.  相似文献   

13.
The dimensioning, a thermal parameters analysis and the experimental heat loss coefficients of an adsorptive solar refrigerator prototype used for ice production are presented. The solar icemaker operates in an intermittent cycle, i.e. without recovering heat. It uses the activated carbon–methanol pair whose basic components are an adsorber coupled to a static solar collector, a condenser and an evaporator. Some innovations were considered, especially those brought about by French researchers, in which the adsorber was always box-shaped with extended surfaces, and air condensers were used. For the present system, the adsorber is bi-facially irradiated and covered with transparent insulation material (TIM), the geometric configuration of the main components is multi-tubular, and a water condenser is used. TIM polycarbonate covers are used on the top and bottom of the adsorber. The components of the prototype were dimensioned after the results from numerical simulations using meteorological data valid for the hottest six months in João Pessoa (7°8′S, 34°50′WG), whose climate is typically hot and humid. The machine was designed to produce up to 10 kg of ice/day per square meter of solar collection surface. Analyses of the thermal parameters influence on the ice production as well as parameters for dimensioning each component of the machine are presented. The overall heat loss coefficient by the top and the bottom of the adsorber–solar collector component are experimentally evaluated. The tests were performed using an incandescent lamp panel disposed on a 1 m2 surface, totalizing a thermal power of 3600 W. The results show a good efficiency of the TIM covers, achieving overall heat loss coefficient values between 0.54 and 1.90 W m−2 K−1.  相似文献   

14.
Thermal energy storage (TES) is regarded as one promising technology for renewable energy and waste heat recovery. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attention due to high energy storage density, long-term heat storage capability and flexible working modes. Originating from STES system, resorption thermal energy storage (RTES) system is established and investigated for recovering the heat in this paper. The system is mainly composed of three high temperature salt (HTS) unit beds; three low temperature salt (LTS) unit beds, valves and heat exchange pipes. Working pair of MnCl2–CaCl2–NH3 is selected for the RTES system. 4.8 kg and 3.9 kg MnCl2 and CaCl2 composite adsorbents are filled in the adsorption bed. Results indicate that the highest thermal storage density is about 1836 kJ/kg when the heat charging and discharging temperature is 155 °C and 55 °C, respectively. Volume density of heat storage ranges from 144 to 304 kWh/m3. The highest ratio of latent heat to sensible heat is about 1.145 when the discharging temperature is 55 °C. The energy efficiency decreases from 97% to 73% when the discharging temperature increases from 55 to 75 °C.  相似文献   

15.
As a promising sludge handling alternative capable of utilizing the secondary energies in industrial environments, we investigated the use of a novel pilot‐scale cyclone dryer for processing industrial mixed sludge from the forest industry. Attainable sludge dry solids contents (%) and respective specific energy consumption of drying (kWh kg?1 H2O) were successfully modelled by response surface methodology based on a constructed design of experiments. Predicted sludge dry solids and the specific energy consumption of drying varied between <30–65% and <0.4–1.8 kWh kg?1 H2O depending on controlled inlet air temperature, sludge feeding rate and humid air recirculation levels. The response models were further optimized for efficient combustion of processed sludge with inlet air temperatures corresponding to potentially available secondary heat. According to the results, energy efficient drying of mixed sludge with a specific energy consumption <0.7 kWh kg?1 H2O can be performed with inlet air temperatures ≥60 °C corresponding with pilot‐scale feeding capacities between 300–350 and 550 kg h?1 depending on inlet air temperature. These findings suggest that the introduction of novel drying systems capable of utilizing the available secondary energies of industrial environments could significantly improve the energy efficiency of sludge drying and potentially allow considerable cost savings for industrial operators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A solar thermochemical reactor with better thermal management is proposed to improve the performance for dry reforming of methane. Conical cavity is introduced in the thermochemical reactor to adjust incident solar radiation distribution. Preheating area is adopted to recover sensible heat from gas outlet. Multiphysical model is presented for analyzing the overall performance of the reactor under different inlet flow rates. Also, local ideal reaction temperature required for maximizing local hydrogen production is analyzed according to the reaction kinetics. It is shown that better synergy between real temperature distribution and ideal temperature requirement can be achieved in this new reactor. Compared with conventional reactor, the present reactor exhibits the better performance in terms of reactant conversion, energy storage efficiency and hydrogen yield. Particularly, hydrogen yield is increased by 4.31%–17.12% at inlet flow rates between 6 and 12 L min?1.  相似文献   

17.
Results of a study to examine the operating characteristics of a 100 kWh thermal energy storage (TES) system suitable for solar thermo electric applications is described. The system chosen consisted of a pebble bed as the primary storage medium and oil as the heat transfer cum storage medium. The operating temperatures considered were between 230 and 250°C with a 20 deg C swing. A full-size unit consisting of a steel tank of volume 10 m3 with 50 mm pebbles, suitable instrumentation and facility for heating the oil was built. The important operating variables and characteristics of the system studied included the transient behaviour of the bed, namely the thermal wave front characteristics. Results of the theoretical analysis of the transient bed behaviour were compared with the experimental data on the wave front propogation characteristics and the comparisons are discussed. The uniformity of flow distribution is also examined.  相似文献   

18.
K. S. Ong 《传热工程》2013,34(13):1091-1097
Experimental investigations were conducted to determine the thermal performances of an R-134a-filled thermosyphon heat pipe heat exchanger (THPHE) and a water-filled loop heat pipe heat exchanger (LHPHE) for hot and cold energy recovery for air conditioning purposes. For such applications, the heat pipe heat exchangers are operated at low temperatures. Both exchangers were operated in the countercurrent flow mode. This article presents the experimental results obtained. The results showed that heat transfer rate increased as evaporator inlet temperature increased and as both evaporator and condenser velocities increased. The overall effectiveness for the THPHE ranged from 0.8 to a minimum of about 0.5, while for the LHPHE it ranged from 0.9 to 0.3. Overall effectiveness was found to approach a minimum when both air streams have equal velocities.  相似文献   

19.
《Energy》1988,13(2):183-190
Compressed air-brine energy storage (CABES) is similar to ordinary compressed air energy storage (CAES). However, in CABES, the heat of compression of the air is stored via a surface-type heat exchanger in water or, preferably, concentrated brine contained in an unpressurized reservoir. Furthermore, the brine is stratified into a hot, lower density, upper layer and a cold, higher density, lower layer, thus eliminating half the needed reservoir volume. In the energy delivery phase the hot brine heats the compressed air prior to its expansion through an expander/generator to recover the stored electric energy. Calculations on a three-stage CABES plant indicate that:
  • 1.(1) the overall electric efficiency is at least 67%;
  • 2.(2) the energy storage density of the brine is 0.016 m3 per electric kWh delivered from storage;
  • 3.(3) the required unit heat transfer surface is 0.27 m2 per electric kWh;
  • 4.(4) the contribution of the reservoir and heat exchanger costs to the cost of electric energy delivered from storage is not excessive.
  相似文献   

20.
For optimum design of borehole thermal energy storage (BTES) and ground sources heat pump (GSHP) applications, determination of underground thermal properties is required. The design and economic feasibility (number and depth of boreholes) of these systems need thermal conductivity of geological structure, λ (W m?1 K?1), and thermal resistance of ground heat exchanger, R (K W?1 m). Thermal properties measured in laboratory experiments do not coincide with data of in situ conditions. Therefore, in situ thermal response test equipment has been developed and used in Canada, England, Germany, Norway, U.K., U.S.A. and Sweden to ensure precise designing of BTES systems. This paper describes the results and evaluations of the Adana continual thermal response test measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号