共查询到19条相似文献,搜索用时 46 毫秒
1.
研究一类含混合变时滞不确定中立系统时滞相关鲁棒稳定性问题。基于时滞中点值,把时滞区间均分成两部分,通过构造包含时滞中点信息的增广泛函和三重积分项的Lyapunov-Krasovskii (L-K)泛函,利用L-K稳定性定理、积分不等式方法和自由权矩阵技术,建立了一种基于线性矩阵不等式(LMI)的、与离散时滞和中立时滞均相关的鲁棒稳定性判据。数值算例表明,该判据改善了已有文献的结论,具有更低的保守性。 相似文献
2.
本文研究了时变时滞连续Hopfield神经网络存在有界参数不确定时的稳定性问题,提出了保证该网络鲁棒稳定的代数Riccati方程(ARE)设计算法.而忽略时滞或忽略参数不确定,则得到有别于以往结果的各种有关参数不确定连续Hopfield神经网络稳定性的定理. 相似文献
3.
4.
5.
6.
在工程实际当中,时变时滞和不确定的存在往往使得系统的性能变差甚至不稳定。针对一类含混合变时滞的不确定中立系统,研究了时滞相关鲁棒稳定性问题。在考虑不确定性为泛数有界的条件下,首先通过构造包含三重积分项的Lyapunov-Krasovskii(L-K)的泛函,其次利用新的积分不等式更紧的界定条件,引入相关项自由权矩阵的方法,处理泛函沿系统的导数产生的交叉项,建立了基于线性矩阵不等式(LMI)形式的鲁棒稳定新判据。该方法不涉及复杂的模型变换,减小了理论推导和计算上的复杂性,所提出判据与离散时滞和中立时滞均相关,且扩大了系统稳定所允许的最大时滞上界范围,具有更低的保守性。仿真算例表明所提出的稳定性判据是有效的。 相似文献
7.
8.
研究了一类不确定中立型变时滞系统的鲁棒稳定性问题。不确定性满足范数有界条件且时变。基于Lyapunov和自由权矩阵的方法,得到了系统的鲁棒稳定性判据,并表示成线性矩阵不等式的形式。最后,仿真结果表明本结论比一些现存的结果有了重要提高。 相似文献
9.
吴海霞 《计算机光盘软件与应用》2014,(11):75-78
针对一类具有离散时滞和参数范数有界的不确定性中立神经网络的全局渐近鲁棒稳定性问题,通过应用范数和矩阵不等式分析方法,构造合适的Lyapunov-Krasovskii泛函,得到了新的与时滞无关的稳定性充分条件。该条件能够保证离散时滞中立神经网络在平衡点全局渐近鲁棒稳定。与现有文献中大多数LMI形式的稳定性准则不同,该稳定性判定准则中未知参数少且计算复杂度低,易于计算验证。最后,一个仿真算例验证了结论的有效性。 相似文献
10.
研究具有时变时滞的不确定大系统的鲁棒稳定性,利用Lyapunov泛函方法.给出该系统鲁棒稳定的充分性判别条件,并结合算例验证了所得结果的有效性和低保守性。 相似文献
11.
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition. 相似文献
12.
当神经网络应用于最优化计算时,理想的情形是只有一个全局渐近稳定的平衡点,并且以指数速度趋近于平衡点,从而减少神经网络所需计算时间.研究了带时变时滞的递归神经网络的全局渐近稳定性.首先将要研究的模型转化为描述系统模型,然后利用Lyapunov-Krasovskii稳定性定理、线性矩阵不等式(LMI)技术、S过程和代数不等式方法,得到了确保时变时滞递归神经网络渐近稳定性的新的充分条件,并将它应用于常时滞神经网络和时滞细胞神经网络模型,分别得到了相应的全局渐近稳定性条件.理论分析和数值模拟显示,所得结果为时滞递归神经网络提供了新的稳定性判定准则. 相似文献
13.
14.
15.
New delay-dependent criterion for the stability of recurrent neural networks with time-varying delay
This paper is concerned with the global asymptotic stability of a class of recurrent neural networks with interval time-varying
delay. By constructing a suitable Lyapunov functional, a new criterion is established to ensure the global asymptotic stability
of the concerned neural networks, which can be expressed in the form of linear matrix inequality and independent of the size
of derivative of time varying delay. Two numerical examples show the effectiveness of the obtained results.
Supported by the National Natural Science Foundation of China (Grant Nos. 60534010, 60728307, 60774048, 60774093), the Program
for Cheung Kong Scholars and Innovative Research Groups of China (Grant No. 60521003) and the National High-Tech Research
& Development Program of China (Grant No. 2006AA04Z183), China Postdoctoral Sciencer Foundation (Grant No. 20080431150), and
the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200801451096) 相似文献
16.
Choon Ki Ahn 《Information Sciences》2010,180(23):4582-4594
In this paper, we propose a new passive weight learning law for switched Hopfield neural networks with time-delay under parametric uncertainty. Based on the proposed passive learning law, some new stability results, such as asymptotical stability, input-to-state stability (ISS), and bounded input-bounded output (BIBO) stability, are presented. An existence condition for the passive weight learning law of switched Hopfield neural networks is expressed in terms of strict linear matrix inequality (LMI). Finally, numerical examples are provided to illustrate our results. 相似文献
17.
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples. 相似文献
18.
Haiyang Zhang Zhipeng Qiu Guanghao Jiang 《International journal of systems science》2019,50(5):970-988
This paper investigates the stochastic stability problem for a class of neutral-type Markov jump neural networks with additive time-varying delays. Firstly, to derive a tighter lower bound of the reciprocally convex quadratic terms, a new reciprocally convex combination inequality is established by using parameters transformation approach. Secondly, by fully considering the peculiarity of various time-varying delays and Markov jumping parameters, an eligible stochastic Lyapunov–Krasovskii functional is constructed. Then, by employing the new reciprocally convex combination inequality and other analytical techniques, some novel stability criteria are provided in the forms of linear matrix inequalities. Finally, four illustrated examples are given to verify the effectiveness and feasibility of the proposed methods. 相似文献
19.
研究了一类具有变时滞的非线性混沌神经网络的指数同步性问题。应用线性矩阵不等式和Lyapunov泛函方法;得到了具有驱动-响应结构的神经网络的指数同步性准则;建立了判断神经网络同步性的新的充分条件。通过实例说明了该方法的可行性和有效性。
相似文献
相似文献