共查询到20条相似文献,搜索用时 15 毫秒
1.
结合降维技术的电力负荷曲线集成聚类算法 总被引:12,自引:0,他引:12
电力负荷曲线聚类是配用电大数据挖掘的基础。分析3种典型聚类有效性指标,指出Davies-Bouldin有效性指标更适用于评估负荷曲线的聚类结果。研究基于层次、基于划分、基于密度、基于模型等类型的聚类算法,从聚类效率和聚类质量两方面评价各种算法。层次聚类的质量较高,效率较低;划分聚类的效率较高,质量较低。针对单一聚类算法的不足,研究基于经典聚类算法的集成聚类算法并将其应用于负荷曲线聚类。该算法包括bootstrap重采样、划分聚类、层次聚类3步,对不同规模数据集的聚类结果表明集成算法具有更好的性能,特别适用于大规模数据集聚类。针对电力负荷曲线的特征,研究多种数据集降维算法,在降维后的数据集上进行集成聚类,比较各种降维算法的信息损失和计算效率。研究结果表明,对于大规模电力负荷曲线的聚类问题,结合主成分分析降维的集成聚类算法可以取得最佳效果。 相似文献
2.
计量通信技术的发展使收集的用户负荷信息越来越准确,从而提供了负荷用电特性聚类分析的数据基础。为了解决电力负荷聚类应用场景中需要聚类结果与典型负荷类别尽可能相似的问题,以蚁群聚类算法为基础,采用典型负荷曲线作为先验信息,将评估聚类效果的指标和聚类中心与典型负荷曲线的距离2个因素构成优度指标来代替传统的均方误差,以此来更新信息素矩阵,设计了一种基于改进蚁群聚类的半监督聚类算法。通过某省工业用户2017年的日负荷数据分析验证了聚类结果不仅向原有的标识样本类型靠近,而且兼顾同类型样本差异小、不同类型样本差异大,具有良好的聚类效果。 相似文献
3.
针对电力负荷曲线聚类中传统的K-means算法对初始值敏感以及需给定类数目的缺陷,将一种基于分位数半径的动态K-means算法应用到日负荷曲线的聚类分析中,并进行了分布式的改进以优化计算效率。此算法结合了两种思想:分布式聚类中的局部聚类与全局聚类,以及层次K-means中以多次k取定值时K-means运算所得到的中心点来表示该类。将多次的K-means运算分配到不同子站点,并使每次K-means运算中k不断改变。再从类的几何特征出发,引入了分位数半径的概念,规定样本点与各类中心点间距的分位数表示该类的半径,于主站点中对各类的中心点间距与类的半径进行大小比较,并进行筛选融合来获得新的类,从而实现较为快速地识别类数目,并且得到新的聚类初始中心与结果。最终以某地区606个用户某月的日负荷数据为研究对象,验证了该算法在电力负荷曲线聚类分析中的有效性。 相似文献
4.
为改善基于欧式距离的全维度负荷曲线聚类算法在负荷形态相似度上的不足,提出了结合负荷形态特征指标的电力系统负荷曲线两步聚类算法。算法第一步采用基于欧式距离的负荷曲线聚类方法获得初步聚类结果,并通过负荷聚类评价指标选取一次聚类算法和聚类数目;第二步基于负荷形态特征指标采用监督学习算法对负荷进行重新分类。之后比较了不同算法的分类效果,最后给出了聚类结果的应用建议。算例结果表明,所提出的两步聚类算法可以改善传统的负荷曲线聚类方法在形态相似度上的不足,在二次分类方法中,支持向量机(support vector machine,SVM)算法表现较好,所提出的方法具有实际应用意义。 相似文献
6.
随着用电信息采集、负荷控制等系统中用户负荷数据的爆炸式增长,传统计算框架与方法在处理海量用户负荷聚类、开展负荷特性分析等业务时面临着巨大的计算压力。着眼于计算精度日益提高、计算能力日渐强大的图形处理单元(graphic process unit,GPU),基于Nvidia的统一计算设备架构(compute uniform device architecture,CUDA)提出了一种负荷曲线快速并行K-means聚类算法,采用距离计算并行化、曲线数统计并行化、线程块分配合理化等多个并行加速策略,极大地提升了用户负荷曲线的聚类速度。多个测试算例表明,文中提出的基于CUDA的K-means电力负荷曲线聚类算法加速比高,适应性强,是解决海量负荷曲线聚类问题的好方法。 相似文献
7.
蚁群算法能够在没有任何先验知识和人为干预的情况下实现自主聚类,并且鲁棒性较强,易于与其他算法相结合。但蚁群算法消耗时间成本较大,效率较低。而K-medoids聚类是一个基于划分的经典聚类算法,该算法聚类速度快、聚类效果好而被广泛应用于各种聚类处理中。但需要人为确定簇数目,并对初始簇中心的依赖性较强。针对以上问题,提出了结合蚁群算法和K-medoids的聚类算法(AKCA),该算法融合了蚁群算法和K-medoids算法各自在聚类上的优点。实验结果表明,该算法对于小型数据集具有运行效率高、聚类质量好和自适用性强等优点。 相似文献
8.
为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一化后的负荷曲线集进行降维处理,以减少样本向量间欧式距离的计算量和加快后续操作。然后利用kd树算法对降维后的数据进行快速K近邻搜索生成KNN矩阵。最后以KNN矩阵代替原算法的距离矩阵作为输入数据。在基于KNN改进的样本局部密度和距离计算准则的基础上,运用快速密度峰值算法对负荷曲线进行聚类分析。通过实验和算例分析验证了所提改进算法的实用性和有效性。 相似文献
9.
采用基于负荷曲线进行用户分类的方法,运用数据挖掘技术中的模糊C均值聚类,将不同行业的用户混合在一起,利用聚类的观点将其分类,对各类负荷曲线进行分析和比较;将模糊C均值聚类算法应用在单个典型行业典型用户(主要是工业和三产的大用户)的分析中,可以发现不同季节、不同月份的负荷数据之间有一定的共性. 相似文献
10.
针对模糊C-均值聚类算法(Fuzzy C-Means,FCM)应用于日负荷曲线聚类分析时存在易受初始聚类中心影响,易收敛于局部最优值以及日负荷曲线的内在特性难以通过距离得到充分反映的问题,利用日负荷特征值指标对日负荷曲线进行数据降维处理。提出了基于灰狼算法(Grey Wolf Optimizer,GWO)优化的模糊C-均值聚类算法(GWO-FCM)。该算法利用GWO为FCM优化初始聚类中心,结合了GWO的全局搜索能力和FCM的局部搜索能力。算例结果表明所提方法可有效提高日负荷曲线聚类效果,算法鲁棒性好。 相似文献
11.
对海量负荷数据进行降维聚类处理是提取负荷关键信息,深度挖掘其内在规律的前提。根据负荷曲线的形态特征,文中提出了一种基于可变时间分辨率自适应分段聚合近似方法的曲线形态聚类算法。首先,根据负荷爬坡事件及基于斜率提取的边缘点来衡量负荷曲线的形态特征及其变化趋势,采用自适应分段聚合近似算法对用户日负荷数据集进行可变时间分辨率重构,进一步采用一种基于负荷曲线形态聚类的k-shape算法进行聚类处理,该聚类算法以一种基于曲线形态相似性的距离量度方式作为相似性判据,并依据斯坦纳树优化方法进行聚类中心计算。利用模拟数据、实测数据算例分析验证了所提算法在数据降维、负荷聚类中的实用性和有效性。 相似文献
12.
对于当前大规模和高维度的用户数据,原始聚类算法有其局限性。提出一种改进的K-means算法与数据降噪处理相结合的方法。首先,DBSCAN(基于密度的空间聚类算法)用于数据去噪,克服了原始K-means聚类算法聚类结果容易受到数据集中噪声点的影响。然后利用轮廓系数和误差平方和确定最优的聚类数。最后,将K-means++聚类算法和确定的最优聚类数用于聚类处理用户负荷曲线。这使得聚类算法避免陷入局部最优,通过数据集测试,表明该方法获得的聚类效果优于原始的K-means算法。 相似文献
13.
14.
考虑双尺度相似性的负荷曲线集成谱聚类算法 总被引:1,自引:0,他引:1
负荷聚类可以依据形态特性差异对负荷曲线进行归类,实现用户用能行为规律分析,为需求侧响应、电网客户服务等提供重要的决策信息。文中提出一种考虑双尺度相似性的负荷曲线集成谱聚类算法。首先,为了克服欧氏距离在负荷特性相似程度度量上的局限,基于负荷差分向量的余弦距离实现负荷形态变化的相似性度量,提出一种双尺度相似性度量方式;然后,基于双尺度相似性与谱聚类算法,建立差异化基聚类模型;最后,依据聚类评价指标自适应计算基聚类模型权重,以加权一致性矩阵与谱聚类实现聚类集成。算例结果证明,所提方法可有效挖掘负荷形态特性差异,在不同数据集中性能表现稳定,具有显著的聚类有效性和鲁棒性。 相似文献
15.
为改善传统聚类算法在电力时序数据上的聚类效果,提出一种基于优化特征向量选取的遗传谱聚类算法。针对应用数据结构特点,合理优化谱聚类算法中特征向量的提取过程,避免传统方法可能造成的数据信息缺失问题;采用遗传聚类优化算法对优选后的特征向量进行聚类划分,并将最终划分结果映射回原始数据。以UCI标准合成时间序列数据与美国区域电网运营商PJM提供的日负荷数据为例,对比分析现有常用聚类算法与所提算法测试结果的聚类有效性指标与形态特征。研究结果表明,所提算法分类效果显著,有较高的聚类质量和算法稳健性,具有工程应用前景。 相似文献
16.
基于自组织映射神经网络的电力用户负荷曲线聚类 总被引:2,自引:1,他引:2
电力用户负荷曲线的聚类是形成合理电价体系和实施负荷管理措施的基础。文中基于自组织映射(SOM)神经网络进行低压终端用户的负荷曲线聚类研究。首先定义并提取功率曲线、分时功率、功率频谱3类向量,分别作为SOM神经网络的输入进行可视化聚类。采用相对量化误差和拓扑误差2个指标表征聚类质量,选取聚类结果最好的SOM输出层结合 k均值法进行用户负荷曲线划分。根据Davies指标将所研究的131条曲线划分为8类,对每类曲线进行描述。最后进行新用户的识别,结果表明聚类方法有效、可靠。 相似文献
17.
用户用电典型模式的分类预测是电力负荷预测的重要组成部分。针对单核模糊C均值算法在电力大数据挖掘中不能兼顾预测精度和普适性能好的问题,提出了一种电力短期负荷场景中改进的无监督学习多核模糊C均值聚类算法,建立了双层神经网络的电力数据负荷预测模型对比该改进的算法对电力负荷预测效果的影响。用户数据由MapReduce并行化处理加速。数值实验结果表明:改进的算法在实际电力用户数据集中,具有广泛的适用性和有效性,同时能显著提高电力短期负荷预测的精度。 相似文献
18.
历史负荷数据是电力系统进行负荷预测的基础,历史数据异常将会影响负荷预测的准确性和有效性,因此需要对负荷数据进行异常数据辨识。本文以某一节点负荷数据为研究对象,提出一种基于二次聚类算法的异常电力负荷数据辨识方法。运用数据挖掘中模糊聚类算法并结合有效指数准则对负荷曲线进行一次聚类;将一次聚类结果结合神经网络实现对负荷曲线的二次聚类,提取出日负荷特征曲线;根据负荷曲线的相似性和平滑性,辨识异常负荷数据。算例分析结果表明,此方法效果良好。 相似文献
19.
20.