首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Fungal infection of barley and malt, particularly by strains of the genus Fusarium, is known to be a direct cause of beer gushing. We have shown previously that small fungal proteins, hydrophobins, isolated from strains of the genera Fusarium, Nigrospora and Trichoderma act as gushing factors in beer. A hydrophobin concentration as low as 0.003 ppm was sufficient to induce gushing. The gushing‐inducing abilities of the isolated hydrophobins varied probably due to their structural differences. The hydrophobins did not affect beer foam stability. A correlation was observed between the hydrophobin level analyzed by the hydrophobin ELISA developed and the gushing potential of malt. The risk of gushing was found to increase with hydrophobin concentrations above 250 μg/g malt. The levels of hydrophobin and the Fusarium mycotoxin deoxynivalenol (DON) in malts were not correlated which indicated that the formation of those two fungal metabolites may not be linked. Furthermore, we did not observe a correlation between the DON content and the gushing potential of the malt studied. Our observations suggest that the accuracy of predicting gushing could be improved by measuring the amount of the actual gushing factors, hydrophobins, in barley or malt.  相似文献   

2.
Fusarium graminearum and the closely related F. culmorum were found to be associated with over foaming of bottled beer (gushing) when contaminated brewing malt is used. The presence of highly surface active hydrophobins produced by these fungi upon growth on wheat or barley in the field or during malting may affect bubble formation and stability in gushing beers and other carbonated beverages. Aiming for a method for the rapid and user friendly analysis of unmalted and malted cereals during quality control in the brewing industry, a loop-mediated isothermal amplification (LAMP) assay for the detection of Fusarium spp. capable of producing the gushing inducing hydrophobin Hyd5p was set up. A set of primers was designed towards a 221 bp region within the hyd5 gene of F. culmorum. The LAMP product was verified by sequencing a 150 bp portion. Testing specificity with purified DNA from 99 different fungal species as well as barley and wheat showed that DNA synthesis only occurred during LAMP when DNA of the closely related species F. graminearum, F. culmorum, F. cerealis and F. lunulosporum were used as template. In-tube indirect detection of DNA amplification was applied using manganese-quenched calcein as fluorescence indicator for pyrophosphate produced during DNA synthesis. The assay had a detection limit of 0.74 pg of purified target DNA which corresponds 20 copy numbers per reaction within 30 minutes using a simple heating block. Analysis of Fusarium infected cereals revealed that the assay was able to detect F. graminearum at a level of 0.5% of infected grains in uninfected barley by analysis of surface washings without further sample preparation. Results show that the hyd5 based LAMP assay can be a rapid, useful and sensitive tool for quality control in the brewing and malting industry.  相似文献   

3.
The spontaneous over-foaming of beer upon opening, i.e. beer gushing, is an unwanted phenomenon for the brewing industry. Currently, surface-active proteins from filamentous fungi and non-specific lipid transfer proteins (nsLTP1) from barley are discussed as gushing inducers. In our study the class I hydrophobin FcHyd3p from Fusarium culmorum, the class II hydrophobin Hfb2 from Trichoderma reesei, the alkaline foam protein A (AfpA) from F. graminearum and nsLTP1 from Hordeum vulgare cv. Marnie (barley) were heterologously expressed in Pichia pastoris and used in gushing tests. The class I hydrophobin FcHyd3p was unable to induce gushing in beer. The class II hydrophobin Hfb2 was able to induce gushing in beer, but proved to be inhibited by heat treatment as well as by the presence of enriched hop compounds. Both resulted in a reduced gushing potential. AfpA and nsLTP1 exhibited no gushing-inducing potential at the amounts added to beer. Addition of these proteins to beer or carbonated water previously treated with class II hydrophobins revealed a gushing reducing character.  相似文献   

4.
The mycoflora of malt which caused gushing beer has been investigated and compared with the mycoflora of malt from nine malting plants in Sweden, Denmark, Finland and England. Malt which caused gushing beer was found to contain a high proportion of grains contaminated by Aspergillus, Penicillium and Rhizopus. The commonest species isolated were found to be Aspergillus fumigatus and Aspergillus amstelodami. These fungi occurred on all malt samples investigated independent of their origin. The mycoflora on malt differs greatly from that found on barley. Evidence is presented showing that barley becomes contaminated during the malting process.  相似文献   

5.
Beer is a complex mixture of over 450 constituents and, in addition, it contains macromolecules such as proteins, nucleic acids, polysaccharides, and lipids. In beer, several different protein groups, originating from barley, barley malt, and yeast, are known to influence beer quality. Some of them play a role in foam formation and mouthfeel, and others are known to form haze and have to be precipitated to guarantee haze stability, since turbidity gives a first visual impression of the quality of beer to the consumer. These proteins are derived from the malt used and are influenced, modified, and aggregated throughout the whole malting and brewing process. During malting, barley storage proteins are partially degraded by proteinases into amino acids and peptides that are critical for obtaining high-quality malt and therefore high-quality wort and beer. During mashing, proteins are solubilized and transferred into the produced wort. Throughout wort boiling proteins are glycated and coagulated being possible to separate those coagulated proteins from the wort as hot trub. In fermentation and maturation process, proteins aggregate as well, because of low pH, and can be separated. The understanding of beer protein also requires knowledge about the barley cultivar characteristics on barley/malt proteins, hordeins, protein Z, and LTP1. This review summarizes the protein composition and functions and the changes of malt proteins in beer during the malting and brewing process. Also methods for protein identification are described.  相似文献   

6.
The fate of five Fusarium toxins — deoxynivalenol (DON), sum of 15- and 3-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2) representing the main trichothecenes and zearalenone (ZON) during the malting and brewing processes — was investigated. In addition to these ‘free’ mycotoxins, the occurrence of deoxynivalenol-3-glucoside (DON-3-Glc) was monitored for the first time in a beer production chain (currently, only DON and ZON are regulated). Two batches of barley, naturally infected and artificially inoculated with Fusarium spp. during the time of flowering, were used as a raw material for processing experiments. A highly sensitive procedure employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was validated for the analysis of ‘free’ Fusarium mycotoxins and DON-conjugate in all types of matrices. The method was also able to detect nivalenol (NIV), fusarenon-X (FUS-X) and T-2 toxin (T-2); nevertheless, none of these toxins was found in any of the samples. While steeping of barley grains (the first step in the malting process) apparently reduced Fusarium mycotoxin levels to below their quantification limits (5–10 µg kg?1), their successive accumulation occurred during germination. In malt, the content of monitored mycotoxins was higher compared with the original barley. The most significant increase was found for DON-3-Glc. During the brewing process, significant further increases in levels occurred. Concentrations of this ‘masked’ DON in final beers exceeded ‘free’ DON, while in malt grists this trichothecene was the most abundant, with the DON/DON-3-Glc ratio being approximately 5:1 in both sample series. When calculating mass balance, no significant changes were observed during brewing for ADONs. The content of DON and ZON slightly decreased by a maximum of 30%. Only traces of HT-2 were detected in some processing intermediates (wort after trub removal and green beer).  相似文献   

7.
Protein Z4, the most abundant form of serpin protein Z of Hordeum vulgare, is one of the major constituents of beer foam and inhibits the activity of serine proteases. The possible influence of protein Z4 on malt proteases, which impact malt quality, is of interest for brewers. In addition, the persistence of Z4 in the brewing process and the ensuing presence of Z4 in beer matters to brewers because of its impact on foam. In order to analyse the influence of Z4 on protease inhibition and beer gushing, Pichia pastoris cells were heterologously transformed with the Z4 coding gene and the protein was recovered from the supernatant of a transformant's liquid culture. Agar diffusion assays showed that the recombinant Z4 protein had an inhibitory effect on proteases present in barley malt. Heat denaturation of the protein impaired protease inhibition and revealed degradation of the structure of Z4. The effect of Z4 on hydrophobin‐induced gushing was analysed by addition of the protein to beers pre‐treated with the class 2 hydrophobin FcHyd5p. Results demonstrated that addition of protein Z4 to gushing beer reduces the overflow volume considerably. Heat treatment again had a negative impact on the gushing reduction capacity of Z4. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

8.
A holistic view of the fate of barley starch, arabinoxylan and β-glucan throughout malting and brewing is largely missing. Here, an industrial scale malting trial and pilot brewing trial were performed, and the concentration and structural characteristics of carbohydrates were analysed at 28 key points in the process. The barley starch content decreased during malting from 75.0% to 69.7%. During mashing, malt starch was converted to fermentable sugars (75.3%), dextrin (22.8%) or was retained in spent grains (1.8%). Arabinoxylan was partially hydrolysed during malting. Despite mashing-in at 45°C, no further solubilisation of arabinoxylan was observed during mashing. However, the average degree of polymerisation of the soluble arabinoxylan fraction decreased slightly. During fermentation, the arabinoxylan content decreased to 2.5 g/L. The amount of barley β-glucan decreased gradually in time during malting. Of the solubilised β-glucan, 31% was retained in the spent grains during wort filtration, slightly lowering the β-glucan content in the wort. The β-glucan content remained at 0.5 g/L during fermentation. Sucrose was hydrolysed during mashing, probably by barley invertases. From the total amount of malt used, 41.0% was converted to fermentable sugars. This mashing yield could have been improved by the full hydrolysis to fermentable sugars of the present β-glucan (to 41.1%), the remaining starch in spent grains (to 42.0%) and dextrin in wort (to 50.3%). These results provide more insight into the carbohydrate conversions during malting and brewing and can act as a baseline measurement for future work. © 2020 The Institute of Brewing & Distilling  相似文献   

9.
As wort is the sweet starter liquid for beer, its quality needs to be strictly controlled. It is generally accepted that wort turbidity is of importance in terms of the brewing process and the resulting beer quality. This study investigated the major ingredients of wort turbidity using the malting barley cultivar Dan'er, grown in Jiangsu province, China. It was found that dextrins of low molecular weight constituted the vast majority of the polysaccharides causing wort turbidity. To solve the turbidity problem with the Dan'er malt, the present study supplemented 80 U g?1 of β‐amylase, and as an activator, an extra 50 mg  L?1 of Ca2+ to the malting process of Dan'er barley. The turbidity of the resulting congress wort of the Dan'er malt declined to <5.0 EBC units, which then met the quality guidelines of the brewery. The results of the present study may also help in developing new turbidity detection methods and yield breeding clues for quality improvement of the barley cultivars in the Jiangsu province of China. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

10.
The fate of five Fusarium toxins--deoxynivalenol (DON), sum of 15- and 3-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2) representing the main trichothecenes and zearalenone (ZON) during the malting and brewing processes--was investigated. In addition to these 'free' mycotoxins, the occurrence of deoxynivalenol-3-glucoside (DON-3-Glc) was monitored for the first time in a beer production chain (currently, only DON and ZON are regulated). Two batches of barley, naturally infected and artificially inoculated with Fusarium spp. during the time of flowering, were used as a raw material for processing experiments. A highly sensitive procedure employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was validated for the analysis of 'free' Fusarium mycotoxins and DON-conjugate in all types of matrices. The method was also able to detect nivalenol (NIV), fusarenon-X (FUS-X) and T-2 toxin (T-2); nevertheless, none of these toxins was found in any of the samples. While steeping of barley grains (the first step in the malting process) apparently reduced Fusarium mycotoxin levels to below their quantification limits (5-10 microg kg(-1)), their successive accumulation occurred during germination. In malt, the content of monitored mycotoxins was higher compared with the original barley. The most significant increase was found for DON-3-Glc. During the brewing process, significant further increases in levels occurred. Concentrations of this 'masked' DON in final beers exceeded 'free' DON, while in malt grists this trichothecene was the most abundant, with the DON/DON-3-Glc ratio being approximately 5:1 in both sample series. When calculating mass balance, no significant changes were observed during brewing for ADONs. The content of DON and ZON slightly decreased by a maximum of 30%. Only traces of HT-2 were detected in some processing intermediates (wort after trub removal and green beer).  相似文献   

11.
The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. The concentration and the quality of lipids in beer depend on their composition in the raw materials and on the brewing process and they may exert considerable influence on beer quality. This paper presents an investigation of the influence of barley variety and malting process on the lipid content of finished malt. Five barley samples, grown in Italy, representing 4 spring barley and 1 winter barley were used. The samples were micro-malted and analysed. The aim of this research was to verify the influence of different barley varieties on the lipid content of malt and also on the changes in fatty acid (FA) profile during the malting process. Lipid content and FA profile were evaluated. Principal component analysis (PCA) was used to establish relationships between the different samples. An evaluation of the correlation between lipid content of barleys and the quality of the resulting malts was also conducted. The data showed that the total lipid content during the malting process decreased significantly as barley was converted into malt. Different barley varieties present different FA contents and different FA patterns. The correlation between the lipid content of barley and the quality of the resulting malt confirmed the negative influence of lipids.  相似文献   

12.
The brewing of beer involves two major biological systems, namely malted barley (malt) and yeast. Both malt and yeast show natural variation and assessing the impact of differing malts on yeast performance is important in the optimisation of the brewing process. Currently, the brewing industry uses well-established tests to assess malt quality, but these frequently fail to predict malt-associated problem fermentations, such as incomplete fermentations, premature yeast flocculation (PYF) and gushing of the final beer product. Antimicrobial compounds, and in particular antiyeast compounds in malt, may be one of the unknown and unmeasured malt factors leading to problem fermentations. In this study, the adaptation of antimicrobial assays for the determination of antiyeast activity in malt is described. Our adapted assay was able to detect differing antiyeast activities in nine malt samples. For this sample set, malts associated with PYF during fermentation and gushing activity in beer showed high antiyeast activity. Both PYF and gushing are malt quality issues associated with fungal infection of barley in the field which may result in elevated antimicrobial activity in the barley grain. Also, two more malts that passed the normal quality control tests were also observed to have high antiyeast activity and such malts must be considered as suspect. Based on our results, this assay is a useful measure of malt quality as it quantifies the antiyeast activity in malt which may adversely impact on brewery fermentation.  相似文献   

13.
BACKGROUND: Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. RESULTS: The quality attributes of barley, malt, kettle‐full‐wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two‐dimensional polyacrylamide gel electrophoresis was used. CONCLUSION: It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Recent advances in our knowledge of the plant physiological and biochemical processes surrounding malting and brewing have prompted the development of a new generation of analytical techniques. These techniques are based upon the measurement of biochemical and physical parameters which have lately been shown to directly influence the quality of both malt and beer. Recognition of these parameters, coupled with a deep insight of the physical and chemical changes that can occur during the entire malting and brewing production chain, allow strategic emplacement of new analyses in order to provide a superior specific monitoring of malting and brewing. In the present context we submit several examples of these novel analyses, spanning from barley control to analysis of pasteurising efficiency. Characteristic for all the analyses discussed, is the ease and rapidity with which they can be performed. The following methods are described: (1) Measurement of both pre-harvest sprouting and germination efficiency in barley. (2) Malt modification analysis to measure malting efficiency, time of kilning and malt homogeneity. (3) Rapid β-glucan analysis in malt, wort and beer. (4) Immunological analysis to determine the amount and type of additives in finished beer as well as addition of adjunct. (5) Enzymic and immunological control of beer pasteurisation.  相似文献   

15.
While beer provides a very stable microbiological environment, a few niche microorganisms are capable of growth in malt, wort and beer. Growth of mycotoxin‐producing fungi during malting, production of off‐flavours and development of turbidity in the packaged product due to the growth and metabolic activity of wild yeasts, certain lactic acid bacteria (LAB) and anaerobic Gram negative bacteria, impact negatively on beer quality. It follows that any means by which microbial contamination can be reduced or controlled would be of great economic interest to the brewing industry and would serve the public interest. There has been an increasing effort to develop novel approaches to minimal processing, such as the exploitation of inhibitory components natural to raw materials, to enhance the microbiological stability of beer. LAB species, which occur as part of the natural barley microbiota, persist during malting and mashing, and can play a positive role in the beer‐manufacturing process by their contribution to wort bioacidification or the elimination of undesirable microorganisms. Other naturally occurring components of beer that have been valued for their preservative properties are hop compounds. It may be possible to enhance the antimicrobial activities of these compounds during brewing. Some yeast strains produce and excrete extracellular toxins called zymocins, which are lethal to sensitive yeast strains. Yeast strains resistant to zymocins have been constructed. Imparting zymocinogenic activity to brewing yeast would offer a defence against wild yeasts in the brewery. Thus, the antimicrobial properties of naturally occurring components of raw materials can be exploited to enhance the microbial stability of beer.  相似文献   

16.
The lipoxygenase‐1‐less (LOX‐less) trait has positive effects on beer quality, in particular, improvement of flavour stability related to the reduction of beer‐deteriorating substances such as trans‐2‐nonenal. ‘Ryohfu’ is the only spring‐sown malting barley variety grown in Hokkaido, located in the northern part of Japan, and has been used in the Japanese brewing industry for over 20 years. ‘Satuiku 2 go’ was developed as the first LOX‐less malting barley variety in Japan by successive back‐crossing with molecular marker‐assisted selection to introduce the LOX‐less trait into the recurrent parent ‘Ryohfu’. The agronomic performance and general malt quality of ‘Satuiku 2 go’ were almost equivalent to those of ‘Ryohfu’. Wort and beer analyses at the pilot‐scale brewing trial indicated that the LOX‐less trait had little effect on the general characteristics. In contrast, the beers made from ‘Satuiku 2 go’ malt exhibited reduced levels of trans‐2‐nonenal and trihydroxyoctadecenoic acid. The sensory evaluation demonstrated the superiority of ‘Satuiku 2 go’ beers stored under differing conditions in terms of staleness. It can be concluded that the LOX‐less trait was effective in different genetic backgrounds of the recurrent parents used for the development of LOX‐less malting barley varieties. Copyright © 2018 The Institute of Brewing & Distilling  相似文献   

17.
The production of malt whisky involves the mashing of barley malt, followed by the fermentation of the resulting wort without further treatment. While this process has many parallels to the production of an all‐malt beer, one of the main differentiating steps during substrate preparation is the inclusion of a boiling step for the wort in the production of beer. Other than the destructive action of the boiling process on microorganisms, the boiling also destroys all malt enzyme activity. Since a typical whisky wash is not boiled it carries through a certain proportion of microbial activity associated with the malt, but more importantly it retains some enzyme activity that has been activated during the malting and mashing processes. The changes in sugars and dextrins during both mashing and fermentation of the resulting wash were investigated. Evidence of the continuous amylolytic activity during an unboiled, all‐malt wash fermentation is shown; while no ongoing amylolytic activity could be deduced during the fermentation of a boiled all‐malt wort. Furthermore, the data suggests that the amylolytic activity during mashing and fermentation are different with regards to α‐amylase action linked to its multiple‐attack action pattern as a function of substrate conformation, temperature, and effectiveness of potential hydrolytic events.  相似文献   

18.
The impact of using different combinations of unmalted barley, Ondea Pro® and barley malt in conjunction with a 35% rice adjunct on mashing performance was examined in a series of small scale mashing trials. The objective was to identify the potential optimal levels and boundaries for the mashing combinations of barley, Ondea Pro®, malt and 35% rice (BOMR) that might apply in commercial brewing. Barley and malt samples used for the trials were selected from a range of Australian commercial barley and malt samples following evaluation by small‐scale mashing. This investigation builds on previous studies in order to adapt the technology to brewing styles common in Asia, where the use of high levels of rice adjunct is common. Mashing with the rice adjunct, combined with differing proportions of barley, Ondea Pro® and malt, resulted in higher extract levels than were observed for reference mashing, using either 100% malt reference or 100% barley reference and Ondea Pro® enzymes. Synergistic mashing effects between barley, Ondea Pro® and malt were observed for mash quality and efficiency parameters, particularly wort fermentability. The optimum levels of barley in the grist (with the relative level of Ondea Pro®) were assessed to be in the range 45–55% when paired with 10–20% malt and 35% rice. When the proportion of malt was reduced below 10% of the grist, substantial reductions in wort quality were observed for wort quality parameters including extract, lautering, fermentability, free amino nitrogen and haze. Extension of this new approach to brewing with rice adjuncts will benefit from further research into barley varietal selection in order to better meet brewer's quality requirements for the finished beer. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

19.
微生物对麦芽品质的影响   总被引:2,自引:0,他引:2  
大麦作为啤酒酿造的主要原料,其表面或外源的微生物在制麦过程中会影响麦芽的品质,并最终影响成品啤酒的质量。近年来研究发现在制麦过程中添加启动子培养物,既能作为微生物控制剂,抑制有害微生糖的生长;同时又能利用微生物分泌的水解酶系来提高麦芽的品质和安全性。本文介绍了麦芽中的微生物种类及其对麦芽质量的影响,并对添加不同启动子培养物对麦芽品质的改善及其工业化应用的可行性进行了探讨。  相似文献   

20.
The aim of this study was to investigate the influences of unmalted barley on the brewing process and the quality of the resulting beer‐like beverages, with the main focus on the oxidative stability, using traditional beer analyses, GC‐MS for the determination of aging compounds and electron paramagnetic resonance spectroscopy to determine free radical activity. For the investigation, brews with different barley proportions and 75% barley brews with a colour malt addition, to compensate for a lower colour using barley, were produced. In general, it can be said that beers with a proportion of up to 50% barley achieved a comparable or higher extract yield and final attenuation owing to the combined effectiveness of the malt and microbial enzymes. Although all analytical values were within the normal range according to Methodensammlung der Mitteleuropäischen Brautechnischen Analysenkommission (MEBAK), a slight decrease in total polyphenols and free amino nitrogen content was observed. Also in response to higher barley portions, an increase of higher molecular weight proteins and β‐glucan was detected. Barley is not exposed to heat and oxidative stress in the malting plant, which explains the lower values of the thiobarbituric acid index and colour as an indicator of Maillard reaction products in the resulting wort and beer. Additionally, the results demonstrate a slower increase of aging compounds during beer storage with increasing barley proportions. Furthermore, it was observed that higher barley proportions led to a better oxidative stability indicated by a lower radical generation (T450‐value) in wort and an increasing beverage antioxidant index/endogenous antioxidative potential (BAX/EAP value) in the final beverage. The case of ‘barley beers’ showed that the positive effect of barley on the oxidative beer stability was greater than the negative effect of the addition of colour malt, to adjust the colour of a 100% malt beer. In sensory comparison with beer produced with 100% malt, the beers brewed with a barley proportion up to 50% showed a slight flavour preference and up to a 75% equivalent evaluation. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号