首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Understanding the underlying role of microstructural design in polymers allows for the manipulation and control of properties for a wide range of specific applications. As such, this work focuses on the study of microstructure–property relationships in l‐ lactide/?‐caprolactone (LL/CL) copolymers. One‐step and two‐step bulk ring‐opening polymerization (ROP) procedures were employed to synthesize LL/CL copolymers of various compositions and chain microstructures. In the one‐step procedure, LL and CL were simultaneously copolymerized to yield P(LL‐stat‐CL) statistical copolymers. In the two‐step procedure, poly(l‐ lactide) (PLL) and poly(?‐caprolactone) (PCL) prepolymers were synthesized in the first step before CL and LL respectively were added in the second step to yield P[LL‐b‐(CL‐stat‐LL)‐b‐LL] and P[CL‐b‐(LL‐stat‐CL)‐b‐CL] block copolymers as the final products. The findings reveal that, in addition to the copolymerization procedure employed, the length and type of the prepolymer play important roles in determining the chain microstructure and thereby the overall properties of the final copolymer. Moreover, control over the degree of crystallinity and the type of crystalline domains, which is controlled during the polymer chemistry process, heavily influences the physical and mechanical properties of the final polymer. In summary, this work describes an interesting approach to the microstructural design of biodegradable copolymers of LL and CL for potential use in biomedical applications. © 2019 Society of Chemical Industry  相似文献   

3.
Methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (MPEG‐PCL) or MPEG‐b‐poly(L ‐lactide) (MPEG‐PLLA) diblock copolymers were prepared by the polymerization of CL or LA, using MPEG as an initiator in the presence of stannous octoate. MPEG‐b‐poly(ε‐caprolactone‐ran‐L ‐lactide) (MPEG‐PCLA) diblock copolymers with different chemical composition of PCL and PLLA were also prepared by adjusting the amount of CL and LA from MPEG in the presence of stannous octoate. In degradation study, the degradation of the MPEG‐PCLA diblock copolymers mainly depends on the PCL and PLLA segments present in their structure. MPEG‐PCLA, with intermediate ratio of PCL and PLLA segment, completely degraded after 14 weeks. Meanwhile, partially degraded MPEG‐PCLA segments and parent MPEG segments were observed at higher PCL or PLLA segment contents. Introduction of PLLA into the PCL segments caused a lowering of the crystallinity of the diblock copolymers, thus, inducing a faster incoming of water into the copolymers. We confirmed that the diblock copolymers, with lower degree of crystallinity, have degraded more rapidly. POLYM. ENG. SCI., 46: 1242–1249, 2006. © 2006 Society of Plastics Engineers  相似文献   

4.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

5.
The quasiliving characteristics of the ring‐opening polymerization of ?‐caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly(?‐caprolactone) (PCL)–poly(L ‐lactide) (PLA) diblock copolymers with the sequential addition of the monomers CL and L ‐lactide. The block structure was confirmed by 1H‐NMR, 13C‐NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide‐angle X‐ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2654–2660, 2006  相似文献   

6.
A diblcok copolymer monomethoxy poly (ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylene carbonate) (MPEG‐b‐P(LA‐co‐MCC)) was obtained by copolymerization of L ‐lactide (LA) and 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG‐b‐P(LA‐co‐MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine‐glycine‐aspartic acid (RGD), respectively. 1H‐NMR spectra confirmed the structure of the copolymer MPEG‐b‐P(LA‐co‐MCC/docetaxel) and MPEG‐b‐P(LA‐co‐MCC/RGD). In vitro antitumor assay indicates that the MPEG‐b‐P(LA‐co‐MCC/docetaxel) conjugate shows high cytotoxic activity against HeLa cancer cells. Cell adhesion and spreading experiment shows that copolymer MPEG‐b‐P(LA‐co‐MCC/RGD) is of benefit to cell adherence and is a promising biodegradable material for cell and tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A novel biodegradable copolyester poly(ε‐caprolactone‐co‐d ,l ‐lactide) with four pendent functional groups was designed and synthesized. The synthetic route includes the following three steps: (1) synthesis of OH‐terminated PCLA (PCLA‐OH) by the ring‐opening copolymerization of ε‐caprolactone and d ,l ‐lactide; (2) end‐group functionalization of PCLA‐OH through the esterification with lysine; and (3) synthesis of tetra‐amino‐terminated PCLA (PCLA‐NH2) by removing the protecting groups. The composition, structure, and thermal property of these copolyesters were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and modulated differential scanning calorimetry. Results revealed that the molecular weight and glass transition temperature of PCLA‐NH2 can be tailored by the careful selection of synthesis parameters. Moreover, polyester elastomers based on PCLA‐NH2 were synthesized and characterized. These polyester elastomers are stabilized in their rubbery state in room temperature and exhibit tunable physiochemical and mechanical properties. POLYM. ENG. SCI., 54:2170–2176, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Nuclear magnetic resonance spectroscopy (NMR) characterization of the statistical copolymers of this study showed that the poly(ε‐caprolactone‐co‐L‐lactide)s, with ε‐caprolactone (ε‐CL) molar contents ranging from 70 to 94% and ε‐CL average sequence length (lCL) between 2.20–9.52, and the poly(ε‐caprolactone‐co‐δ‐valerolactone)s, with 60 to 85% of ε‐CL and lCL between 2.65–6.08, present semi‐alternating (R→2) and random (R~1) distribution of sequences, respectively. These syntheses were carried out with the aim of reducing the crystallinity of poly(ε‐caprolactone) (PCL), needed to provide mechanical strength to the material but also responsible for its slow degradation rate. However, this was not achieved in the case of the ε‐caprolactone‐co‐δ‐valerolactone (ε‐CL‐co‐δ‐VAL). Non‐isothermal cooling treatments at different rates and isothermal crystallizations (at 5, 10, 21 and 37°C) were conducted by differential scanning calorimetry (DSC), and demonstrated that ε‐CL copolymers containing δ‐valerolactone (δ‐VAL) exhibited a larger crystallization capability than those of L‐lactide (L‐LA) and also arranged into crystalline structures over shorter times. The crystallization enthalpies of the ε‐CL‐co‐δ‐VAL copolymers during the cooling treatments and their heat of fusion (ΔHm) at the different isothermal temperatures were very large (i.e. ΔHc > 53 Jg?1) and in some cases, unrelated to the copolymer composition. In some compositions, such as the 60 : 40, Wide Angle X‐ray Scattering (WAXS) proved that that these two lactones undergo isomorphism and co‐crystallize in a single cell. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42534.  相似文献   

11.
The effect of the compatibilizers, P(LLA‐co‐?CL) and P(LLA‐b‐?CL), on the morphology and hydrolysis of the blend of poly(?‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was investigated. An addition of P(LLA‐co‐?CL) or P(LLA‐b‐?CL) into the blend could enhance the compatibility between the dispersed PCL domains and the PLLA matrix. The size of the PCL domains in the PLLA/PCL (70/30) blend containing P(LLA‐co‐?CL) reduced more significantly with an increase in the content of the compatibilizer than that in the blend containing P(LLA‐b‐?CL). The molecular weight of the PLLA/PCL blend films compatibilized with P(LLA‐co‐?CL) or P(LLA‐b‐?CL) decreased during the hydrolysis and the decrease of the molecular weight of the blend films compatibilized with P(LLA‐co‐?CL) was much more significant than that of the blend films compatibilized with P(LLA‐b‐?CL). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1892–1898, 2002  相似文献   

12.
This article describes the compatibility of two semicrystalline polymers, poly(ε‐caprolactone) (PCL) and poly(l‐lactic acid) (PLLA). The compatibility of the PCL/PLLA blends was enhanced by the compatibilizing effect of the poly(l,l‐lactide‐co‐ε‐caprolactone) [P(lLA‐co‐εCL)]. A discussion details the effect of the concentration of the compatibilizing agent, the copolymer of l,l‐lactide and ε‐caprolactone of a 50/50 mol ratio [P(lLA‐co‐εCL)], on the compatibility and the crystallization behavior of the blends of PCL and PLLA. It was found that the addition of P(lLA‐co‐εCL) could suppress the crystallization of PLLA at its Tc and induced the concurrent crystallization of PLLA and PCL. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 226–231, 2000  相似文献   

13.
Synthesis of cyclic biopolymers from renewable monomers remains a big challenge because of lack of efficient catalysts. The organocatalyst of N‐heterocyclic carbene (NHC), (+)‐1‐methyl‐3‐menthoxymethyl imidazol‐2‐ylidene, is used to prepare cyclic polylactones including poly(ε‐caprolactone) (poly(ε‐CL)), poly(δ‐valearolactone) (poly(δ‐VL)), and poly(ε‐caprolactone‐co‐δ‐valearolactone) (poly(ε‐CL‐co‐δ‐VL)) via zwitterionic ring opening polymerization. The NHC catalyst is founded a highly efficient organic catalyst for the polymerization. The resulting cyclic polymers show a melting temperature (Tm) in a range of 20–60°C, which is dramatically lower than the Tm of cyclic poly(lactide) (Tm = 120–150°C). The resulting copolymer, cyclic poly(ε‐CL‐co‐δ‐VL) owns high molecular weight comparing with corresponding linear poly(ε‐CL‐co‐δ‐VL) produced by other catalysts. The synthesized cyclic homo and copolymers were characterized by 1H‐, 13C‐NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry–thermogravimetric analysis and matrix‐assisted laser desorption ionization‐time of flight mass spectrometry. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Some novel polymeric fibrous nonwoven meshes have been processed from solution blends of poly(l ‐lactide‐co‐caprolactone), P(LL‐CL), and gelatin for use as biodegradable porous scaffolds in articular cartilage tissue engineering. P(LL‐CL) copolymers with LL:CL compositions ranging from 50:50 to 80:20 mol% were synthesized via the bulk ring‐opening copolymerization of L‐lactide (LL) and ε‐caprolactone (CL) using tin(II) octoate, Sn(Oct)2, as the initiator. To make the hydrophobic P(LL‐CL) more hydrophilic for cell culture, it was solution blended with gelatin using trifluoroethanol as a common solvent to give P(LL‐CL):gelatin contents in the final scaffolds ranging from 70:30 to 95:5 wt%. Two different processing methods were used: electrospinning and wet spinning. Although electrospinning gave a more uniform mesh of nanosized fibers, the nonwoven mesh from wet spinning with its much larger pores and greater pliability was found to be more suitable for water absorption, cell infiltration and shape‐forming. Scanning electron micrographs of the scaffolds from the two techniques are compared. From the results obtained, the wet‐spun P(LL‐CL)50:50/gelatin 95:5 scaffold gave the best combination of properties. In particular, the 5% gelatin content resulted in a fivefold increase in the scaffold's equilibrium water uptake from about 10% to over 50% by weight. POLYM. ENG. SCI., 57:875–882, 2017. © 2016 Society of Plastics Engineers  相似文献   

15.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
Poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their blend (50/50) films containing different amounts of poly(L ‐lactide‐co‐ε‐caprolactone) (PLLA‐CL), were prepared by solution casting. The effects of added PLLA‐CL on the enzymatic hydrolysis of the films were investigated in the presence of proteinase K and Rhizopus arrhizus lipase by use of gravimetry. The addition of PLLA‐CL decreased the proteinase K–catalyzed hydrolyzabilities of the PLLA and PLLA/PCL (50/50) films as well as the Rhizopus arrhizus lipase‐catalyzed hydrolyzability of the PCL and PLLA/PCL (50/50) films. The decreased enzymatic hydrolyzabilities of the PLLA and PCL films upon addition of PLLA‐CL are attributable to the fact that the PLLA‐CL is miscible with PLLA and PCL and the dissolved PLLA‐CL must disturb the adsorption and/or scission processes of the enzymes. In addition to this effect, the decreased enzymatic hydrolyzabilities of the PLLA/PCL (50/50) films upon addition of PLLA‐CL can be explained by the enhanced compatibility between the PLLA‐rich and PCL‐rich phases arising from the dissolved PLLA‐CL. These effects result in decreased hydrolyzable interfacial area for PLLA/PCL films. The decrement in proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PLLA‐CL, which is miscible with PLLA, was in marked contrast with the enhanced proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PCL, which is immiscible with PLLA. This confirms that the miscibility of the second polymer is crucial to determine the proteinase K–catalyzed hydrolyzabilities of the PLLA‐based blend films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 412–419, 2003  相似文献   

17.
Copolymerization of mixtures of L ‐lactide and ε‐caprolactone has been initiated by diphenylzinc. The reaction conditions were investigated, to discover the effects on yield, molecular weight and microstructure of copolymers obtained. The temperature used varied between 50 and 120 °C, the molar ratio of monomer to initiator ranged between 90 and 1440 mol/mol, and the molar ratio of ε‐caprolactone to L ‐lactide employed was between 100/0 and 0/100 mol/mol. Copolymers were characterized by 1H‐NMR, 13C‐NMR, DSC and gel permeation chromatography. The results indicate that incorporation of L ‐lactide to the growing chain is preferred and ε‐caprolactone is copolymerized after most of the L ‐lactide has been depleted. The microstructure of obtained copolyesters was affected considerably by transesterification reactions. It was observed that increasing reaction temperature, reaction time and concentration initiator was advantageous to the transesterification. The crystallinity of copolyester obtained was determined by differential scanning calorimetry. The results are in good agreement with both molar composition and sequence distribution of copolyesters. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
In this research, poly(L ‐lactide‐co‐ε‐caprolactone) (PLACL) reinforced with well‐dispersed multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared by oxidization and functionalization of the MWCNT surfaces using oligomeric L ‐lactide (LA) and ε‐caprolactone (CL). It is found that the surface functionalization can effectively improve the dispersion and adhesion of MWCNTs in PLACL. The surface functionalization will have a significant effect on the physical, thermomechanical, and degradation properties of MWCNT/PLACL composites. The tensile modulus, yield stress, tensile strength, and elongation at break of composite increased 49%, 60%, 70%, and 94%, respectively, when the concentration of functionalized MWCNTs in composite is 2 wt %. The in vitro degradation rate of nanocomposites in phosphate buffer solution increased about 100%. The glass transition temperature (Tg) of composites was decreased when the concentration of functionalized MWCNTs is 0.5 wt %. With further increasing the concentration of functionalized MWCNTs, the Tg was increased. The degradation kinetics of nanocomposites can be engineered and functionalized by varying the contents of pristine or functionalized MWCNTs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A random copolymer based on poly(L ‐lactide) (PLA) with poly(ε‐caprolactone) (PCL) was prepared and characterized by mechanical testing and solid state NMR, compared with a polymer blend. For a monofilament sample consisting of PLA/PCL random copolymer, there were negative correlations between the CL content and the mechanical properties: tensile strength, tensile elastic modulus, flexural rigidity, and flexural hysteresis decreased with increasing CL content. In contrast, the mechanical properties of the polymer blend were only slightly changed by addition of the CL unit. For the random copolymer, the addition of a small amount of CL reduced relaxation times, T1C and TH, gradually. The T1C and TH values correlated closely with the tensile elastic modulus and the tensile strength, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号