首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Conceptual and procedural knowledge are two mutually‐supportive factors associated with the development of engineering skill. The present study extends previous work on undergraduate learning in engineering to provide further validation for an assessment paradigm capable of quantifying engineering students' conceptual and problem‐solving knowledge. Eight students who were enrolled in an introductory thermodynamics course and four who were enrolled in the course sequel provided verbal protocol data as they used instructional software. They were compared to existing data from a cohort of eleven science and engineering majors who had not taken thermodynamics. The results replicated earlier findings showing more cognitive activity on computer screens requiring overt user interaction compared to text‐based screens. The data also indicated that higher‐ versus lower‐performing students, based on course grades, engaged in more higher‐order cognitive processing. There was no evidence that students gained deeper cognitive processing as they advanced through the engineering curriculum.  相似文献   

2.
Background While engineering instructional materials and practice problems for pre‐college students are often presented in the context of real‐life situations, college‐level texts are typically written in abstract form. Purpose (Hypothesis ) The goal of this study was to jointly examine the impact of contextualizing engineering instruction and varying the number of practice opportunities on pre‐college students' learning and learning perceptions. Design/ Method Using a 3 × 2 factorial design, students were randomly assigned to learn about electrical circuit analysis with an instructional program that represented problems in abstract, contextualized, or both forms, either with two practice problems or four practice problems. The abstract problems were devoid of any real‐life context and represented with standard abstract electrical circuit diagrams. The contextualized problems were anchored around real‐life scenarios and represented with life‐like images. The combined contextualized‐abstract condition added abstract circuit diagrams to the contextualized representation. To measure learning, students were given a problem‐solving near‐transfer post‐test. Learning perceptions were measured using a program‐rating survey where students had to rate the instructional program's diagrams, helpfulness, and difficulty. Results Students in the combined contextualized‐abstract condition scored higher on the post‐test, produced better problem representations, and rated the program's diagrams and helpfulness higher than their counterparts. Students who were given two practice problems gave higher program diagram and helpfulness ratings than those given four practice problems. Conclusions These findings suggest that pre‐college engineering instruction should consider anchoring learning in real‐life contexts and providing students with abstract problem representations that can be transferred to a variety of problems.  相似文献   

3.
Many recent studies demonstrate that cooperative learning provides a variety of educational advantages over more traditional instructional models, both in general and specifically in engineering education. Little is known, however, about the interactional dynamics among students in engineering work groups. To explore these dynamics and their implications for engineering education, we analyzed work sessions of student groups in a sophomore‐level chemical engineering course at North Carolina State University. Using conversation analysis as a methodology for understanding how students taught and learned from one another, we found that group members generally engaged in two types of teaching‐learning interactions. In the first type, transfer‐of‐knowledge (TK) sequences, they took on distinct teacher and pupil roles, and in the second, collaborative sequences (CS), they worked together with no clear role differentiation. The interactional problems that occurred during the work sessions were associated primarily with TK sequences, and had to do with students who either habitually assumed the pupil's role (constant pupils) or habitually discouraged others' contributions (blockers). Our findings suggest that professors can facilitate student group interactions by introducing students to the two modes of teaching interaction so group members can effectively manage exchanges of knowledge, and also by helping students distribute tasks in a way that minimizes role imbalances.  相似文献   

4.
VizClass, a university classroom visualization environment, was developed to bridge the gap between high‐tech engineering practice and low‐tech engineering pedagogy. It contains a suite of digital whiteboards, a three‐dimensional stereoscopic display, and specialized software for engineering visualization. Through observations, interviews, surveys, and examination of student work, we investigated student and teacher attitudes toward VizClass and its effect on teaching and learning processes. Observed benefits of teaching in the new environment include increased ability of faculty to visually explain complex problems, increased ability of students to conceptualize engineering problems, and increased engagement of students in after‐class collaboration.  相似文献   

5.
Background Even as expectations for engineers continue to evolve to meet global challenges, analytical problem solving remains a central skill. Thus, improving students' analytical problem solving skills remains an important goal in engineering education. This study involves observation of students as they execute the initial steps of an engineering problem solving process in statics. Purpose (Hypothesis ) (1) What knowledge elements do statics students have the greatest difficulty applying during problem solving? (2) Are there differences in the knowledge elements that are accurately applied by strong and weak statics students? (3) Are there differences in the cognitive and metacognitive strategies used by strong and weak statics students during analysis? Design /Method These questions were addressed using think‐aloud sessions during which students solved typical textbook problems. We selected the work of twelve students for detailed analysis, six weak and six strong problem solvers, using an extreme groups split based on scores on the think‐aloud problems and a course exam score. The think‐aloud data from the two sets of students were analyzed to identify common technical errors and also major differences in the problem solving processes. Conclusions We found that the weak, and most of the strong problem solvers relied heavily on memory to decide what reactions were present at a given connection, and few of the students could reason physically about what reactions should be present. Furthermore, the cognitive analysis of the students' problems solving processes revealed substantial differences in the use of self‐explanation by weak and strong students.  相似文献   

6.
Multimedia systems have emerged as one of the fastest growing segments of computing systems and thus need to be well integrated into a computer engineering curriculum. Fortunately the teaching and learning of multimedia systems can be aided with novel instructional techniques based on multimedia. The Multimedia Curriculum project at the University of Massachusetts Amherst is developing a unified set of instructional materials on the engineering techniques used in the design and test of hardware, software and networks for multimedia. This large project includes three facets: 1) multimedia instructional modules using web‐linked Digital Video Disks, 2) multimedia communication utilities to facilitate student interaction, and 3) multimedia component design projects. In this paper, we explain our approach to using multimedia as both content and instructional technology and briefly present preliminary results in each of the three facets.  相似文献   

7.
Practicing engineers are hired, retained, and rewarded for solving problems, so engineering students should learn how to solve workplace problems. Workplace engineering problems are substantively different from the kinds of problems that engineering students most often solve in the classroom; therefore, learning to solve classroom problems does not necessarily prepare engineering students to solve workplace problems. These qualitative studies of workplace engineering problems identify the attributes of workplace problems. Workplace problems are ill‐structured and complex because they possess conflicting goals, multiple solution methods, non‐engineering success standards, non‐engineering constraints, unanticipated problems, distributed knowledge, collaborative activity systems, the importance of experience, and multiple forms of problem representation. Some implications for designing engineering curricula and experiences that better prepare students for solving workplace problems are considered.  相似文献   

8.
Teaching design is an integral part of most engineering curricula. Often, students are introduced to the engineering design process through a chapter in a textbook. Does this passive approach to teaching an active process aid the students' learning? An experiment was conducted to assess what students learn about the design process when they read a text. Here, 10 students enrolled in a freshman course were asked to read aloud from a freshmen engineering textbook. Half of the subjects read the text prior to solving three open-ended engineering design problems and the other half solved the same problems before they read the text. Both the subjects' process in solving the problems, as well as the quality of their solutions (the product), are assessed. Results show that subjects that read the text before they solved the three problems spent significantly more time solving the problems and were more sophisticated in their problem solving strategies. These subjects also scored better when judged on the quality of their approach to the problem (including the number of design criteria considered, communications, assumptions, and technical accuracy). However, these subjects did not score better on a quality measure of the final solution.  相似文献   

9.
The engineering professor's role is dualistic in the sense that not only must s/he create an academic environment conducive to the acquisition of course content but must also prepare students to become practicing professionals. This dualism requires that the professor both motivate good study habits as well as build within students the confidence that they have the requisite capability to perform actual engineering. Self‐efficacy, simply defined as one's self‐judgment concerning capability, has been shown to be an important mediating factor in cognitive motivation. This paper describes the motivating role of the professor, theories of motivation, the role of self‐efficacy in motivation, and guiding principles that can be used to enhance self‐efficacy in engineering students. These principles can serve as guidelines in designing instructional delivery strategies that motivate engineering students to engage in behaviors conducive to becoming value‐added practitioners.  相似文献   

10.
This paper is a summary report of the “Teamed Internships Program” (TIP), an Advanced Technological Education (ATE) grant through the National Science Foundation (NSF). This three‐year project created internships encompassing regional industries, federal research facilities, and two‐ and four‐year educational institutions. The project cultivated teamwork and communication skills for environmental technician and engineering students, developed instructional materials, and provided valuable contacts with industry. To foster faculty and teacher enhancement and student interest in environmental science and technology, insights from the program were incorporated into instructional materials and educational modules for dissemination to local secondary schools.  相似文献   

11.
Computer simulation tools are frequently used in engineering design work, and undergraduates are often trained to use these tools as they learn to design systems. The use of new tools in the learning environment should be evaluated to assure that the students are able to use the tools effectively. This study details and demonstrates the use of a Kirkpatrick's Level 1 Evaluation to assess the effectiveness of an instructional environment in which students learn to use a computer simulation tool to perform engineering design work. Specifically, an evaluation was conducted to look at student perceptions of FOODS‐LIB—a steady‐state food process design tool, its user's manual learning modules, and the implementation of FOODS‐LIB in a senior level design course. This evaluation was triangulated with an instructor's assessment of student products generated as the students used the learning modules and designed an ice cream manufacturing process using FOODS‐LIB.  相似文献   

12.
Teaching operations engineering to traditional and non‐traditional engineering students using case learning methods presents both instructional challenges and provides learning rewards when performed properly. Unfortunately, few engineering faculty have had exposure to this learning approach. However, the skills are learnable and the results satisfying to instructor and student alike. The purpose of this paper is to explore case learning methods and illustrate their appropriateness for a course in operations engineering.  相似文献   

13.
As college students experience the challenges of their classes and extracurricular activities, they undergo a developmental progression in which they gradually relinquish their belief in the certainty of knowledge and the omniscience of authorities and take increasing responsibility for their own learning. At the highest developmental level normally seen in college students (which few attain before graduation), they display attitudes and thinking patterns resembling those of expert scientists and engineers, including habitually and skillfully gathering and analyzing evidence to support their judgments. This paper proposes an instructional model designed to provide a suitable balance of challenge and support to advance students to that level. The model components are (1) variety and choice of learning tasks; (2) explicit communication and explanation of expectations; (3) modeling, practice, and constructive feedback on high‐level tasks; (4) a student‐centered instructional environment; and (5) respect for students at all levels of development.  相似文献   

14.

Background

This exploratory study uses multimodal approaches to explore undergraduate student engagement via topic emotions and electrodermal activity (EDA) in different engineering design method activities and with different instructional delivery formats (e.g., lecture vs. active learning).

Purpose/Hypothesis

The goal of this research is to improve our understanding of how students respond, via engagement, to their engineering design activities during class. This study hypothesizes that students would experience no self‐reported mean changes in topic emotions from their preassessment scores for each engineering design topic and instructional format nor would electrodermal activities (EDA) associate to these topic emotions throughout the design activities.

Design/Method

Eighty‐eight freshmen engineering students completed online pretopic and posttopic emotions surveys for five engineering design activities. A subset of 14–18 participants, the focal point of this study, wore an EDA sensor while completing the surveys and participating in these sessions.

Results

Preliminary findings suggest that EDA increased for individual and collaborative active learning activities compared to lectures. No significant changes in EDA were found between individual and collaborative active learning activities. Moderate negative correlations were found between EDA and negative topic emotions in the first engineering design activity but not across the rest. At the end of the semester, active learning activities showed higher effect sizes indicating a re‐enforcement of students' engagement in the engineering design method activities.

Conclusion

This study provides initial results showing how multimodal approaches can help researchers understand students' closer‐to‐real‐time engagement in engineering design topics and instructional delivery formats.  相似文献   

15.
Homework in engineering courses is used to develop problem‐solving skills and to provide students with the practice they need in order to achieve mastery of essential concepts and procedures in their disciplines. We describe homework exercises that were developed for introductory thermodynamics and delivered to students via the Internet. Records of student use were created automatically by the computer server. The data revealed students' patterns of software usage in the context of the course; additional data from course instructors revealed the extent to which completing the on‐line homework improved students' in‐class test performance.  相似文献   

16.
Background Distance learning course formats can alter modes of information exchange and interpersonal interaction relative to traditional course formats. Purpose (Hypothesis ) To determine the effect of a distance course format on the knowledge acquisition (cognitive learning) and satisfaction (affective learning) of students, we investigated student learning responses and social presence during a graduate‐level engineering course taught via traditional (i.e., professor present in the classroom) and synchronous distance‐learning formats. Design /Method Direct quantification of participation, academic performance assessment based on homework and exam scores, and survey‐based assessments of student perceptions of the course were collected. Based on these data, cognitive and affective learning responses to different technological and interaction‐based aspects of the course were determined for each course format. Results We show that while affective learning decreased for students in the distance format course relative to the traditional format, cognitive learning was comparable. Our results suggest that loss of satellite connection and audio losses had a stronger negative effect on student perceptions than video disturbances, and that participation was the most important factor influencing affective learning. Conclusions While our findings do not suggest that cognitive learning is strongly affected by social presence, implementing strategies to enhance social presence may improve the overall learning experience and make distance learning more enjoyable for students.  相似文献   

17.
This paper describes the use of CyclePad—an articulate virtual laboratory for creating and analyzing thermodynamics cycles—at three different types of educational institutions: a research university, an engineering technology program in a large state university, and a military academy. Case studies of each site were created based on classroom observations, student surveys, and interviews with faculty. In comparing these three institutions, we found that the context of the school and the ways in which professors chose to implement CyclePad led to different student experiences. Depending on the types of problems that students worked on, they found the software more or less helpful in increasing their understanding of thermodynamics. Students in the class that had the most constraints on its curriculum, where little change was possible, were less able to take full advantage of the software's capabilities.  相似文献   

18.
建筑环境与设备工程专业工程热力学教学实践与探索   总被引:1,自引:0,他引:1  
工程热力学是建筑环境与设备工程专业的专业基础课之一,是该专业毕业生适应多样化相关专业工作的知识源泉,也是部分学生继续深造的理论基础,其重要性不言而喻.在总结出建筑环境与设备专业的工程热力学教学要点后,针对教学中所反映的问题,提出相应的措施.  相似文献   

19.
Since the new ABET accreditation system was first introduced to American engineering education in the middle 1990s as Engineering Criteria 2000, most discussion in the literature has focused on how to assess Outcomes 3a‐3k and relatively little has concerned how to equip students with the skills and attitudes specified in those outcomes. This paper seeks to fill this gap. Its goals are to (1) overview the accreditation process and clarify the confusing array of terms associated with it (objectives, outcomes, outcome indicators, etc.); (2) provide guidance on the formulation of course learning objectives and assessment methods that address Outcomes 3a‐3k; (3) identify and describe instructional techniques that should effectively prepare students to achieve those outcomes by the time they graduate; and (4) propose a strategy for integrating program‐level and course‐level activities when designing an instructional program to meet the requirements of the ABET engineering criteria.  相似文献   

20.
The College of Engineering at the University of Cincinnati has evaluated the use of instructional technologies to improve the learning process for students in fundamental engineering science courses. The goal of this effort was to both retain more students in engineering programs and improve student performance through appropriate use of technology. Four modes of instruction were used to teach an engineering fundamentals course in statics. A traditional instructor‐led course, a Web‐assisted course, a streaming media course, and an interactive video course were all presented using a common syllabus, homework, tests, and grading regimen. Evaluations of final course grades indicate that use of instructional technology improved student performance when compared with traditional teaching methods. Student satisfaction with technology varied considerably with the Web‐assisted format having the highest student approval rating of the technologies. The results indicate that time on task and interest in content can be improved through the appropriate use of technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号