共查询到20条相似文献,搜索用时 250 毫秒
1.
为提高目标跟踪的准确性,针对当前目标跟踪算法因光照、遮挡以及姿态变化等因素引起的漂移问题,提出一种鲁棒低秩稀疏表示的在线目标跟踪算法(LRSP)。以粒子滤波作为目标跟踪的基本框架,通过联合采用低秩矩阵恢复和稀疏表示,发现连续帧和密集粒子之间潜在结构信息,降低数据维度,减少计算复杂度,提高目标跟踪的准确性。实验结果表明,相对于其它目标跟踪算法,LRSP算法可以更准确地跟踪目标,对光照和姿态变化具有良好的鲁棒性,对于严重遮挡目标跟踪问题具有明显优势。 相似文献
2.
3.
传统的低秩表示模型LRR对高维数据聚类精确度低,针对这一情况提出一种基于拉普拉斯正则化双曲正切函数低秩子空间聚类算法(LRHT-LRSC).该算法利用双曲正切函数代替核范数以便更紧凑地逼近秩函数,并利用拉普拉斯正则项刻画数据本身的几何结构,提高了数据聚类的准确率;然后构建数据样本的系数矩阵和相似矩阵;最后利用谱聚类方法得到最终的聚类结果.在合成数据集、真实数据集ExtendedYaleB和Hopkins155上的对比实验结果表明,LRHT-LRSC能够提高聚类的准确率和鲁棒性. 相似文献
4.
5.
6.
7.
8.
低秩矩阵恢复算法主要包括鲁棒主成分分析、矩阵补全、低秩表示,由于矩阵补全是一个NP难的问题,低秩表示涉及到字典矩阵,复杂度高,因此本文主要针对鲁棒主成分分析在FPGA上的研究与应用进行了描述,并且在CPU以及FPGA上实现了图像恢复.实验结果表明,基于FPGA的HLS设计相对于传统CPU在速度上得到了数十倍的提高. 相似文献
9.
在低秩表示算法的基础上,提出了一个新模型。新模型构建了揭示数据内在特征联系的亲和度图以实现聚类任务。首先,根据矩阵分解原理对原始数据重新生成数据字典,在算法初始输入时筛除部分噪声。其次,利用数据间的稀疏性加强局部约束,为给定的数据向量构建非负低秩亲和度图。亲和度图中边的权重由非负低秩稀疏系数矩阵获得,系数矩阵通过每个数据样本作为其他数据样本的线性组合完成构建,如此获得的亲和度图显示了数据的子空间结构,同时表现局部线性结构。与现存的子空间算法相比,非负局部约束低秩子空间算法在聚类效果上有明显的提升。 相似文献
10.
11.
针对基于低秩表示的子空间分割算法运算时间较长、聚类的准确率也不够高,提出一种基于分布式低秩表示的稀疏子空间聚类算法(distributed low rank representation-based sparse subspace clustering algorithm, DLRRS),该算法采用分布式并行计算来得到低秩表示的系数矩阵,然后保留系数矩阵每列的前k个绝对值最大系数,其他系数置为0,用此系数矩阵构造一个稀疏的样本关系更突出的相似度矩阵,接着用谱聚类得到聚类结果.但是其不具备增量学习功能,为此再提出一种基于分布式低秩表示的增量式稀疏子空间聚类算法(scalable distributed low rank representation based sparse subspace clustering algorithm, SDLRRS),如果有新增样本,可以利用前面的聚类结果对新增样本进行分类得到最后的结果.实验结果表明:所提2种子空间聚类算法不仅有效减少算法的运算时间,还提高了聚类的准确率,从而验证算法是有效可行的. 相似文献
12.
针对无监督属性选择算法无类别信息和未考虑属性低秩等问题,该文提出了一种融合K均值聚类和低秩约束的属性选择算法。算法在线性回归的模型框架中有效地嵌入自表达方法,同时利用K均值聚类产生伪类标签最大化类间距以更好地稀疏结构,并使用l2,p-范数代替传统的l2,1-范数,通过参数p来灵活调节结果的稀疏性,最后证明了该文算法具有执行线性判别分析的特点和收敛性。经实验验证,该文提出的属性算法与NFS算法、LDA算法、RFS算法、RSR算法相比分类准确率平均提高了17.04%、13.95%、3.6%和9.39%,分类准确率方差也是最小的,分类结果稳定。 相似文献
13.
现有的图聚类方法主要存在两方面的问题, 一是对各个类规模一致的假设, 在许多实际应用中并不成立; 二是在处理多类聚类问题时, 其所常借助的递归技术或启发式算法会影响聚类的性能. 为此, 本文提出一种基于灵活平衡约束的多类图聚类方法. 其能够覆盖从绝对平衡约束到无平衡约束的范围, 可同时处理类别规模一致和不一致的问题. 为有效求解新方法中的参数, 进一步提出一个紧松弛方法来使所提出的图聚类方法不仅易于求解, 且在处理多类聚类问题时不必依赖递归技术, 而能直接得到聚类结果. 另外, 本文还给出一种实现松弛图聚类的有效求解算法. 在合成数据和真实数据上的实验结果表明, 所提出的方法具有良好的性能. 相似文献
14.
为提高谱聚类算法的鲁棒性,基于稀疏编码在图的构造中提出一种改进L1稀疏表示图模型。每个样本表示为数据集中其他样本的稀疏线性组合,得到稀疏图的边权表示,所构造的稀疏图对数据噪声有很好的鲁棒性,同时能够反映数据局部线性结构。采用稀疏矩阵表示,该方法能够大大降低存储量和计算量,因而对于处理较大规模问题有着较好的可伸缩性。人工数据和实际数据上的谱聚类实验验证了该算法的性能。 相似文献
15.
现有的非负矩阵分解方法(NMF)还存在一些不足之处。一方面,NMF方法直接在高维原始图像数据集上计算它的低维表示,而实际上原始图像数据集的有效信息常常隐藏在它的低秩结构中;另一方面,NMF方法还存在对噪声数据和不可靠图敏感以及鲁棒性差的缺点。为了解决这些问题,提出了一种非负低秩图嵌入算法(NLGE),该算法同时考虑了原始图像数据的几何信息和有效低秩结构,使得其鲁棒性有了进一步的提高。此外,还给出了一种求解NLGE算法的迭代规则,并进一步证明了该求解算法的收敛性。最后,在ORL、CMU PIE、YaleB和USPS数据库上的实验结果表明了NLGE算法的有效性。 相似文献
16.
提出一种基于先进的凸优化技术的光度立体视觉重建框架. 首先通过鲁棒的主成分分析(Robust principle component analysis, RPCA)祛除图像噪声, 得到低秩矩阵和物体表面向量场, 然后再通过表面重建算法从向量场来恢复物体形状. 相对于先前的一些使用最小二乘或者一些启发式鲁棒技术的方法, 该方法使用了所有可用的信息, 可以同时修复数据中的丢失和噪声数据, 显示出了较高的计算效率以及对于大的稀疏噪声的鲁棒性. 实验结果表明, 本文提出的框架大大提高了在噪声存在情况下物体表面的重建精度. 相似文献
17.
子空间聚类在运动分割、人脸聚类上得了广泛的应用,并且取得很好的聚类效果.针对稀疏子空间聚类和最小二乘回归子空间聚类求得的表示系数存在类内过于稀疏和类间过于稠密的问题,本文利用l2范数,提出一种基于欧氏距离的且具有组效应的加权低秩子空间聚类算法,此算法通过基于欧氏距离的加权方式,使得最终的表示系数在保证同一子空间数据点联系的同时,减小不同子空间数据点之间的联系.利用此表示系数建立相似矩阵J,将J应用到谱聚类得到聚类结果.实验结果表明,与当前流行的算法比较,本算法取得了较好的聚类效果. 相似文献
18.
稀疏子空间聚类综述 总被引:25,自引:7,他引:25
稀疏子空间聚类(Sparse subspace clustering, SSC)是一种基于谱聚类的数据聚类框架. 高维数据通常分布于若干个低维子空间的并上, 因此高维数据在适当字典下的表示具有稀疏性. 稀疏子空间聚类利用高维数据的稀疏表示系数构造相似度矩阵, 然后利用谱聚类方法得到数据的子空间聚类结果. 其核心是设计能够揭示高维数据真实子空间结构的表示模型, 使得到的表示系数及由此构造的相似度矩阵有助于精确的子空间聚类. 稀疏子空间聚类在机器学习、计算机视觉、图像处理和模式识别等领域已经得到了广泛的研究和应用, 但仍有很大的发展空间. 本文对已有稀疏子空间聚类方法的模型、算法和应用等方面进行详细阐述, 并分析存在的不足, 指出进一步研究的方向. 相似文献
19.