共查询到19条相似文献,搜索用时 62 毫秒
1.
为提高目标跟踪的准确性,针对当前目标跟踪算法因光照、遮挡以及姿态变化等因素引起的漂移问题,提出一种鲁棒低秩稀疏表示的在线目标跟踪算法(LRSP)。以粒子滤波作为目标跟踪的基本框架,通过联合采用低秩矩阵恢复和稀疏表示,发现连续帧和密集粒子之间潜在结构信息,降低数据维度,减少计算复杂度,提高目标跟踪的准确性。实验结果表明,相对于其它目标跟踪算法,LRSP算法可以更准确地跟踪目标,对光照和姿态变化具有良好的鲁棒性,对于严重遮挡目标跟踪问题具有明显优势。 相似文献
2.
3.
传统的低秩表示模型LRR对高维数据聚类精确度低,针对这一情况提出一种基于拉普拉斯正则化双曲正切函数低秩子空间聚类算法(LRHT-LRSC).该算法利用双曲正切函数代替核范数以便更紧凑地逼近秩函数,并利用拉普拉斯正则项刻画数据本身的几何结构,提高了数据聚类的准确率;然后构建数据样本的系数矩阵和相似矩阵;最后利用谱聚类方法得到最终的聚类结果.在合成数据集、真实数据集ExtendedYaleB和Hopkins155上的对比实验结果表明,LRHT-LRSC能够提高聚类的准确率和鲁棒性. 相似文献
4.
5.
6.
7.
8.
低秩矩阵恢复算法主要包括鲁棒主成分分析、矩阵补全、低秩表示,由于矩阵补全是一个NP难的问题,低秩表示涉及到字典矩阵,复杂度高,因此本文主要针对鲁棒主成分分析在FPGA上的研究与应用进行了描述,并且在CPU以及FPGA上实现了图像恢复.实验结果表明,基于FPGA的HLS设计相对于传统CPU在速度上得到了数十倍的提高. 相似文献
9.
在低秩表示算法的基础上,提出了一个新模型。新模型构建了揭示数据内在特征联系的亲和度图以实现聚类任务。首先,根据矩阵分解原理对原始数据重新生成数据字典,在算法初始输入时筛除部分噪声。其次,利用数据间的稀疏性加强局部约束,为给定的数据向量构建非负低秩亲和度图。亲和度图中边的权重由非负低秩稀疏系数矩阵获得,系数矩阵通过每个数据样本作为其他数据样本的线性组合完成构建,如此获得的亲和度图显示了数据的子空间结构,同时表现局部线性结构。与现存的子空间算法相比,非负局部约束低秩子空间算法在聚类效果上有明显的提升。 相似文献
10.
11.
鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和 L 0
范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和 L p
范数提出了一种基于双加权 L p
范数的RPCA模型,利用加权 S p
范数低秩项和加权 L p
范数稀疏项分别对RPCA框架中的低秩恢复问题和稀疏恢复问题进行建模,使其更接近秩函数和 L 0
范数最小化问题的解,提升了矩阵秩估计和稀疏估计的准确性。为了验证模型性能,本文利用图像的非局部自相似性,结合相似图像块组的低秩性与椒盐噪声的稀疏性,将双加权 L p
范数鲁棒主成分分析模型应用于去除椒盐噪声过程中。定量与定性的实验结果表明,本文模型性能优于其他模型,同时奇异值过收缩分析也表明本文模型能够有效抑制秩成分的过度收缩。 相似文献
12.
目的 肺区分割是肺癌计算机辅助诊断系统的首要步骤。主动形状模型(active shape model,ASM)能根据训练集获得肺区形状模型,再结合待分割肺区影像自身的局部特征,进行测试影像的分割。由于主成分分析(principal component analysis,PCA)仅能去除服从高斯分布的噪声,不能处理其他类型的噪声,所以当训练集含有非高斯类型的噪声样本时,采用基于PCA的ASM无法训练出正确的形状模型,使得肺区分割不能得到正确的结果。而低秩(low rank,LR)理论的鲁棒主成分分析(robust principal component analysis,RPCA)能去除各种类型的噪声,基于此,本文提出一种将RPCA与ASM相结合的方法。方法 首先对训练样本集标记点矩阵进行低秩分解,去除噪声样本对训练出的形状模型的影响。然后在ASM训练局部梯度模型时,用判断训练样本轮廓上的标记点曲率直方图的相似度来去除噪声样本。结果 在训练集含噪声样本时,将基于RPCA的ASM与传统ASM(即基于PCA的ASM)分别生成的形状模型进行对比,发现基于RPCA的ASM生成的形状模型与训练集无噪声样本时传统ASM生成的形状模型更相符。在训练集含噪声样本的情况下,基于RPCA的ASM方法分割EMPIRE10数据集中的22个肺影像,与金标准的重叠度为94.5%,而基于PCA的ASM方法分割准确率仅为69.5%。结论 实验结果表明,在训练样本集中有噪声样本的情况下,基于RPCA的ASM分割能得到比基于PCA的ASM更好的分割效果。 相似文献
13.
提出一种基于先进的凸优化技术的光度立体视觉重建框架. 首先通过鲁棒的主成分分析(Robust principle component analysis, RPCA)祛除图像噪声, 得到低秩矩阵和物体表面向量场, 然后再通过表面重建算法从向量场来恢复物体形状. 相对于先前的一些使用最小二乘或者一些启发式鲁棒技术的方法, 该方法使用了所有可用的信息, 可以同时修复数据中的丢失和噪声数据, 显示出了较高的计算效率以及对于大的稀疏噪声的鲁棒性. 实验结果表明, 本文提出的框架大大提高了在噪声存在情况下物体表面的重建精度. 相似文献
14.
针对传统边缘检测方法未能在抗噪性能与边缘检测精度之间取得较好的权衡的问题,利用鲁棒主成分分析模型良好的矩阵恢复能力与图像模糊边缘检测算法较佳的边缘检测性能,提出一种基于RPCA的图像模糊边缘检测算法,将图像的边缘检测问题转化为图像主成分的边缘检测问题。该算法对含噪图像进行RPCA分解,得到对应的稀疏图像和低秩图像,再用一种基于阈值的隶属函数将低秩图像转化至等效的模糊特征平面,并在该特征平面上进行模糊增强运算,最后进行空域转化及边缘提取等操作得到最终的边缘图像。实验结果表明,该算法提高了边缘定位的精度,对不同类型、不同强度的噪声均具有较好的抑制能力,适用于对实时性要求不高的图像处理。 相似文献
15.
利用核函数主元分析(KPCA)方法对大样本、高维数据进行特征提取预处理,并结合文化算法(CA)选择最优或接近最优的核函数,将其用于模糊C均值(FCM)聚类中,不但有效地提取了样本的非线性信息,而且使样本维数得到约简。实验表明该方法具有较好的聚类效果和更少的训练时间。 相似文献
16.
In this paper, we present an algorithm for constructing adjacency graphs of 3D finite element analysis (FEA) data. Adjacency graphs are created to represent the connectivities of FEA data cells. They are used in most visualization methods for FEA data. We stress that in many engineering applications FEA data sets do not contain the adjacency information. This is opposite to computer-aided geometric design where, e.g., the winged edge geometrical representation is usually generated and utilized. By establishing intermediate data structures and using bin-sorting, we developed an efficient algorithm for constructing such graphs. The total time complexity of the algorithm is linear in the number of data cells. 相似文献
17.
在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观测矩阵上通过拉普拉斯特征映射得到时空图拉普拉斯矩阵,将得到的时空图拉普拉斯矩阵嵌入低秩背景矩阵以保持背景对噪声和离群值的鲁棒性。实验结果表明,所提模型在复杂场景中能较准确检测出运动目标。 相似文献
18.
限制隐私泄露的隐私保护聚类算法 总被引:1,自引:0,他引:1
为了解决在极端情况下数据挖掘中隐私泄露的问题,分析了在数据聚类时增加Laplace噪音可以避免隐私泄露的原理,结合主成份分析与噪音扰动方法,提出了一种限制隐私泄露的隐私保护聚类算法.该算法利用主成份分析除掉了数据的相关性,将Laplace噪音加入数据的主成份向量中,然后计算被扰动的数据之间距离变化值,这样可以避免扰动后的数据被还原,以达到在隐私保护聚类挖掘中限制隐私泄露的目的.仿真实验结果表明,该算法对于数据聚类时限制隐私泄露是正确有效的. 相似文献
19.
基于运动轨迹聚类的运动分割 总被引:1,自引:0,他引:1
文中提出了一种基于子空间聚类的运动分割算法。针对基于因式分解的运动分割方法对噪声敏感的问题,引入一个基于形状相关矩阵的相似矩阵,然后将特征点映射到一个由相似矩阵决定的低维子空间中。在这个子空间中,可以通过光谱图聚类方法对特征点进行聚类。为提高光谱图聚类方法的分段常数特征向量条件,文中计算了一个相关的概率矩阵的较大特征值相对于边权重变化的敏感度,来切断类之间的连接。通过实验,可以看到文中的方法有较好的鲁棒性。 相似文献