首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高维多目标优化问题是目标个数多于3的多目标优化问题.尽管进化优化方法在多目标优化问题求解中显示了卓越的性能,但是,对于高维多目标优化问题,已有方法存在目标维数难以扩展、Pareto占优关系无法区分进化个体,以及多样性维护策略失效等困难.因此,高维多目标优化问题的高效求解引起进化优化界的高度关注.本文将分别从新型占优关系、多样性维护策略、目标缩减、目标聚合、基于性能指标的选择、融入偏好、集合进化、变化算子、可视化技术,以及应用等10个方面分类总结近年来进化高维多目标优化的研究成果,通过分析已有研究存在的问题,指出今后可能的研究方向.  相似文献   

2.
高维多目标优化问题(many-objective optimization problems, MaOPs)已经普遍存在于工业和科学领域中,这类问题的目标数一般超过3个且目标之间存在冲突性。进化算法作为一种基于种群的元启发式搜索方法已经被证实能够有效求解MaOPs。近二十年来,高维多目标进化算法(many-objective evolutionary algorithms, MaOEAs)研究已取得了长足发展。现对进化高维多目标优化(evolutionary many-objective optimization, EMaO)的研究进展进行全面的综述,具体包括:(1)描述了EMaO的相关理论背景;(2)分析了EMaO面临的挑战;(3)详细讨论了Ma OEAs的发展概况;(4)归纳了Ma OPs以及性能指标;(5)介绍了面对高维目标空间的可视化工具;(6)总结了Ma OEAs在一些领域的应用;(7)剖析了进化算法在解决MaOPs时所面临的问题和挑战,并给出未来研究方向的建议。  相似文献   

3.
现实中大量存在的高维多目标优化问题对以往高效的多目标进化算法提出了严峻的挑战.通过将分解策略和协同策略相结合提出一种高维多目标进化算法MaOEA/DCE.该算法利用混合水平正交实验方法在聚合系数空间产生一组均匀分布的权重向量以改善初始种群的分布性;其次,算法将差分进化算子和自适应SBX算子进行协同进化,以产生高质量的子代个体,并改善算法的收敛性.该算法与另外5种高性能的多目标进化算法在基准测试函数集DTLZ{1,2,4,5}上进行对比实验,利用改进的反转世代距离指标IGD+评估各算法的性能.实验结果表明,Ma OEA/DCE算法与其他对比算法相比,在总体上具有较为显著的收敛性和分布性优势.  相似文献   

4.
季新芳  张凤  王彩君  严海领  李娜 《控制与决策》2018,33(12):2213-2217
区间参数高维多目标优化问题是现实生活中常见的一类优化问题,但其有效的求解方法并不是很多.对此,利用集合的概念,提出一种求解此类问题的新方法.首先,利用衡量解集收敛性、分布性、多样性的3种性能指标将原优化问题降为3目标优化问题;其次,采用集合Pareto占优关系和不确定测度来区分转化后优化问题解的优劣;再次,设计自适应变化的交叉、变异概率以提高种群的全局和局部搜索能力;最后,利用4种基准函数优化问题,对所提出方法和对比方法进行测试.测试结果显示,除了收敛性,所提出方法得到的Pareto解集的不确定性、多样性、分布性均优于对比方法.  相似文献   

5.
进化高维多目标优化算法研究综述   总被引:1,自引:2,他引:1  
首先针对常规多目标优化算法求解高维多目标优化时面临的选择压力衰减问题进行论述;然后针对该问题,按照选择机制的不同详细介绍基于Pareto支配、基于分解策略和基于性能评价指标的典型高维多目标优化算法,并分析各自的优缺点;接着立足于一种全新的性能评价指标-----R2指标,给出R2指标的具体定义,介绍基于R2指标的高维多目标优化算法,分析此类算法的本质,并按照R2指标的4个关键组成部分进行综述;最后,发掘其存在的潜在问题以及未来发展空间.  相似文献   

6.
尽管区间参数高维多目标优化问题普遍存在且非常重要, 但是, 目前求解该问题的方法却很少. 本文提出一种有效解决该问题的集合进化优化方法, 通过在进化过程中融入决策者的偏好, 以得到符合决策者偏好的Pareto解集. 该方法将原优化问题转化为以超体积、不确定度、决策者满意度为新目标的确定型3目标优化问题; 为了求解转化后的优化问题, 采用集合Pareto占优关系比较个体, 并设计融入决策者偏好的延展性测度, 以进一步区分具有相同序值的个体; 此外, 还提出集合变异与重组策略, 以生成高性能的子代种群. 采用4个基准高维多目标优化问题和1个汽车驾驶室设计问题测试所提方法的性能, 并将其与另外3种方法进行对比. 实验结果验证, 该方法能得到收敛性、延展性、不确定度, 以及决策者满意度均衡的Pareto解集.  相似文献   

7.
董明刚  曾慧斌  敬超 《控制与决策》2021,36(8):1804-1814
对现有的分解方法进行改进,提出一种基于弱关联的自适应高维多目标进化算法(WAEA).首先,提出一种基于夹角子空间的关联策略,使得一个解能与多个参考向量相关联;其次,提出弱关联概念,并基于此概念设计双模态标量函数,使算法能够更好地处理复杂PF问题,此外,算法通过检测参考向量子空间内解的数量,自适应调整惩罚参数大小,使其能...  相似文献   

8.
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角...  相似文献   

9.
肖婧  毕晓君  王科俊 《软件学报》2015,26(7):1574-1583
目标数超过4的高维多目标优化是目前进化多目标优化领域求解难度最大的问题之一,现有的多目标进化算法求解该类问题时,存在收敛性和解集分布性上的缺陷,难以满足实际工程优化需求.提出一种基于全局排序的高维多目标进化算法GR-MODE,首先,采用一种新的全局排序策略增强选择压力,无需用户偏好及目标主次信息,且避免宽松Pareto支配在排序结果合理性与可信性上的损失;其次,采用Harmonic平均拥挤距离对个体进行全局密度估计,提高现有局部密度估计方法的精确性;最后,针对高维多目标复杂空间搜索需求,设计新的精英选择策略及适应度值评价函数.将该算法与国内外现有的5种高性能多目标进化算法在标准测试函数集DTLZ{1,2, 4,5}上进行对比实验,结果表明,该算法具有明显的性能优势,大幅提升了4~30维高维多目标优化的收敛性和分布性.  相似文献   

10.
尽管许多高维多目标进化算法已被提出,但大多仍无法有效处理具有不规则Pareto前沿的高维多目标优化问题.鉴于此,提出基于目标迁移和条件替代的高维多目标进化算法(MaOEA-OTCR),在环境选择过程中利用目标迁移策略和条件替代准则协作逐一选择收敛性和多样性好的个体进入下一代.前者首先选择位于Pareto前沿边界的极值解进入下一代,以确定Pareto前沿的范围,同时选择收敛性最好的若干个体进入下一代,以加速种群收敛;然后迁移已选解集且利用迁移解集和未迁移解集的最大距离来选择收敛性和多样性好的个体进入下一代.后者利用基于角度和收敛性评估的条件取代准则来防止前者过度强调多样性.此外,提出一个多标准决策的匹配选择策略,旨在增加具有良好收敛性和多样性种群个体结合的概率,进一步提升算法的搜索效率.为了验证MaOEA-OTCR的有效性,在3个测试集上与8个先进的高维多目标进化算法进行对比实验.实验结果表明, MaOEA-OTCR在处理高维多目标优化问题时不仅能够获得较强的竞争性能,而且有能力处理具有不规则Pareto前沿的高维多目标优化问题.  相似文献   

11.
Tourism route planning is widely applied in the smart tourism field. The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails, sharp peaks and disconnected regions problems, which leads to uneven distribution and weak diversity of optimization solutions of tourism routes. Inspired by these limitations, we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR) with two-stage and Pareto layering based on decom...  相似文献   

12.
基于进化算法的多目标优化方法   总被引:10,自引:0,他引:10  
进化算法在解决多目标优化问题中有其特有的优势.首先对多目标优化问题进行了描述;然后结合研究现状讨论了目前几种主要的基于进化算法的多目标优化方法,以及它们的优缺点;最后给出了多目标进化优化算法的一些应用,以及进化多目标优化算法的未来发展方向.  相似文献   

13.
谢承旺  郭华  韦伟  姜磊 《软件学报》2023,34(4):1523-1542
传统的基于Pareto支配关系的多目标进化算法(MOEA)难以有效求解高维多目标优化问题(MaOP). 提出一种利用PBI效用函数的双距离构造的支配关系, 且无需引入额外的参数. 其次, 利用双距离定义了一种多样性保持方法, 该方法不仅考虑了解个体的双距离, 而且还可以根据优化问题的目标数目自适应地调整多样性占比, 以较好地平衡高维目标解群的收敛性和多样性. 最后, 将基于双距离构造的支配关系和多样性保持方法嵌入到NSGA-II算法框架中, 设计了一种基于双距离的高维多目标进化算法MaOEA/d2. 该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ和WFG基准测试问题上进行了IGD和HV性能测试, 结果表明, MaOEA/d2算法具有较好的收敛性和多样性. 由此表明, MaOEA/d2算法是一种颇具前景的高维多目标进化算法.  相似文献   

14.
动态多目标优化进化算法及性能分析   总被引:1,自引:0,他引:1  
刘淳安 《计算机仿真》2010,27(4):201-205
针对动态多目标优化问题提出了一种求解的新进化算法。首先,构建了一种近似估计新环境下动态多目标优化问题的Pareto核迁移估计模型。其次,当探测到问题环境发生改变时,算法利用以前环境搜索到的Pareto核的有效信息通过Pareto核迁移估计模型对新环境下的进化种群进行近似估计;当问题的环境未发生变化时,引入了带区间分割的变异算子和非劣解存档保优策略,以提高算法的搜索效率。最后计算机仿真表明新算法对动态多目标优化问题十分有效。  相似文献   

15.
基于分解的超多目标进化算法是求解各类超多目标优化问题的主流方法, 其性能在很大程度上依赖于所采用参考向量与真实帕累托前沿面(Pareto front, PF)的匹配程度. 现有基于分解的超多目标进化算法尚难以同时有效处理各类PF不同的优化问题. 为此, 提出了一种基于PF曲率预估的超多目标进化算法(MaOEA-CE). 所提算法的核心包括两个方面, 首先基于对PF曲率的预估, 在每次迭代过程中生成不同的参考向量, 以渐进匹配不同类型问题的真实PF; 其次在环境选择过程中, 再基于预估的曲率选择合适的聚合函数对精英解进行挑选, 并对参考向量进行动态调整, 在维护种群多样性的同时提升种群的收敛性. 为验证MaOEA-CE的有效性, 将其与7个先进的超多目标算法在3个主流测试问题集DTLZ、WFG和MaF上进行对比, 实验结果表明MaOEA-CE具有明显的竞争力.  相似文献   

16.
权重求和是基于分解的超多目标进化算法中常用的方法, 相比其他方法具有计算简单、搜索效率高等优点, 但难以有效处理帕累托前沿面(Pareto optimal front, PF)为非凸型的问题. 为充分发挥权重求和方法的优势, 同时又能处理好PF为非凸型的问题, 本文提出了一种基于目标空间转换权重求和的超多目标进化算法, 简称NSGAIII-OSTWS. 该算法的核心是将各种问题的PF转换为凸型曲面, 再利用权重求和方法进行优化. 具体地, 首先利用预估PF的形状计算个体到预估PF的距离; 然后, 根据该距离值将个体映射到目标空间中预估凸型曲面与理想点之间的对应位置; 最后, 采用权重求和函数计算出映射后个体的适应值, 据此实现对问题的进化优化. 为验证NSGAIII-OSTWS的有效性, 将NSGAIII-OSTWS与7个NSGAIII的变体, 以及9个具有代表性的先进超多目标进化算法在WFG、DTLZ和LSMOP基准问题上进行对比, 实验结果表明NSGAIII-OSTWS具备明显的竞争性能.  相似文献   

17.
基于双极偏好占优的高维目标进化算法   总被引:1,自引:0,他引:1  
高维目标优化是目前多目标优化领域的研究热点和难点.提出一种占优机制,即双极偏好占优用于处理高维目标优化问题.该占优机制同时考虑决策者的正偏好和负偏好信息,在非支配解之间建立了更加严格的占优关系,能够有效减少种群中非支配解的比例,引导算法向靠近正偏好同时远离负偏好的Pareto最优区域收敛.为检验该方法的有效性,将双极偏好占优融入NSGA-Ⅱ中,形成算法2p-NSGA-Ⅱ,并在2到15目标标准测试函数上进行测试,得到了良好的实验结果.同时,将所提出的占优机制与目前该领域的两种占优机制g占优和r占优进行性能对比,实验结果表明,2p-NSGA-Ⅱ算法无论是在求解精度还是运行效率上,整体上均优于g-NSGA-Ⅱ和r-NSGA-Ⅱ.  相似文献   

18.
一种求解约束多目标优化问题的线性进化算法   总被引:2,自引:0,他引:2  
针对多目标优化问题,提出了一种新的基于实数编码的线性进化算法.新算法将约束优化问题的高维搜索空间通过线性变换映射到二维空间,在二维空间中探索原优化问题的解,并构造出一种线性适应度函数,重新设计了一种基于密度函数的交叉算子.对二组典型优化问题的测试表明,本算法是可行和有效的,解集分布的均匀性与多样性均较理想.  相似文献   

19.
一种基于自适应模糊支配的高维多目标粒子群算法   总被引:1,自引:0,他引:1  
高维多目标优化问题由于具有巨大的目标空间使得一些经典的多目标优化算法面临挑战.提出一种基于自适应模糊支配的高维多目标粒子群算法MAPSOAF,该算法定义了一种自适应的模糊支配关系,通过对模糊支配的阈值自适应变化若干步长,在加强个体间支配能力的同时实现对种群选择压力的精细化控制,以改善算法的收敛性;其次,通过从外部档案集中选取扰动粒子,并在粒子速度更新公式中新增一扰动项以克服粒子群早熟收敛并改善个体分布的均匀性;另外,算法利用简化的Harmonic归一化距离评估个体的密度,在改善种群分布性的同时降低算法的计算代价.该算法与另外五种高性能的多目标进化算法在标准测试函数集DTLZ{1,2,4,5}上进行对比实验,结果表明该算法在收敛性和多样性方面总体上具有较显著的性能优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号