共查询到17条相似文献,搜索用时 93 毫秒
1.
在蛋白质相互作用(Protein-Protein Interaction,PPI)网络中检测蛋白质功能模块有助于预测未知蛋白质的功能模块。随着蛋白质相互作用有效数据迅速增长,如何通过PPI网络获得有效的蛋白质功能模块成为最大挑战。阐述PPI网络的发展及现状,通过对当前蛋白质功能模块检测算法进行归纳总结,把它们分为单元聚类和多元聚类,并对每类的代表性方法进行详细阐述;讨论蛋白质相互作用网络功能模块检测研究所面临的挑战及未来研究方向。 相似文献
2.
鉴于多标签传播算法在发现社会网络的社区结构研究上具有快速、高效的求解能力,提出融合多源蛋白质生物学知识的基于多标签传播机制的蛋白质相互作用(PPI)网络功能模块检测算法.首先,结合PPI网络功能信息和结构信息初始化节点的标签.然后,利用基因表达数据描述蛋白质间的共表达性,依据共表达性构建标签集合,从中选择标签以实现标签在节点间真实可靠的传播.最后,将具有相同标识符的节点划分到同一功能模块中,获得最终结果.实验表明文中算法不仅具有良好的时间性能,而且在检测精度上也具有一定的竞争性. 相似文献
3.
4.
分析孤立点检测方法,总结国内外孤立点的研究现状,基于相似度系数和矩阵对蛋白质进行聚类,把大于某一阈值的蛋白质列入稀疏蛋白质集中,基于相似系数对蛋白质相互作用网络中的孤立点进行了检测. 相似文献
5.
蛋白质相互作用网络(Protein-Protein Interactions Network,PIN)的相似性问题是目前生物信息学领域研究的热点。将计算机科学和生物学相结合,提出了蛋白质相互作用网络邻居优先搜索算法。该算法综合蛋白质的序列信息和蛋白质相互作用网络的拓扑结构信息,适度提高与相似蛋白质有直接相互作用的蛋白质之间的相似系数,实现了不同物种间蛋白质相互作用相似子网络的搜索。与同类算法的对比实验表明,该算法可以处理更大规模的目标子网搜索,计算速度明显提高,且利用该算法获得的结果与目标子网具有更长的相似路径。论文采用该算法研究了酵母和果蝇的蛋白质相互作用网络,获得了10条相对保守的蛋白质相互作用(Protein-Protein Interactions,PPI)。 相似文献
6.
针对谱聚类融合模糊C-means(FCM)聚类的蛋白质相互作用(PPI)网络功能模块挖掘方法准确率不高、执行效率较低和易受假阳性影响的问题,提出一种基于模糊谱聚类的不确定PPI网络功能模块挖掘(FSC-FM)方法。首先,构建一个不确定PPI网络模型,使用边聚集系数给每一条蛋白质交互作用赋予一个存在概率测度,克服假阳性对实验结果的影响;第二,利用基于边聚集系数流行距离(FEC)策略改进谱聚类中的相似度计算,解决谱聚类算法对尺度参数敏感的问题,进而利用谱聚类算法对不确定PPI网络数据进行预处理,降低数据的维数,提高聚类的准确率;第三,设计基于密度的概率中心选取策略(DPCS)解决模糊C-means算法对初始聚类中心和聚类数目敏感的问题,并对预处理后的PPI数据进行FCM聚类,提高聚类的执行效率以及灵敏度;最后,采用改进的边期望稠密度(EED)对挖掘出的蛋白质功能模块进行过滤。在酵母菌DIP数据集上运行各个算法可知,FSC-FM与基于不确定图模型的检测蛋白质复合物(DCU)算法相比,F-measure值提高了27.92%,执行效率提高了27.92%;与在动态蛋白质相互作用网络中识别复合物的方法(CDUN)、演化算法(EA)、医学基因或蛋白质预测算法(MGPPA)相比也有更高的F-measure值和执行效率。实验结果表明,在不确定PPI网络中,FSC-FM适合用于功能模块的挖掘。 相似文献
7.
随着分子生物学的研究进入以蛋白质组学为标志的后基因组时代,蛋白质相互作用成为蛋白质组学研究的一个重要主题.因为计算方法代价低和周期短的特点,它被广泛地用来分析相互作用数据从而指导生物学家的实验设计.从蛋白质相互作用网络的构建到分析两个方面综述了蛋白质相互作用研究中的各种计算方法:介绍了通过机器学习方法预测、文本挖掘和评估相互作用的各种技术;特别详细地阐述了相互作用网络的重要参数和典型生物模型,并对运用图论方法分析和计算的各种算法进行了深入的剖析;最后,对蛋白质相互作用的计算研究进行了总结和展望. 相似文献
8.
视杆细胞(Rod cells)可检测进入眼内的光亮程度,其灵敏度依赖于视紫红质(rhodopsin)的数量。由于视杆细胞 ROS 区域的蛋白质活性较高,加之视紫红质也高度集中在 ROS 区域。文章从网络生物学的角度研究了视杆细胞 ROS 区域的蛋白质交互作用。首先,获取,修订和构造了一个 ROS 区域蛋白质交互的复杂网络模型。随后,研究了该模型的重要网络性质。最后,研究的重点集中在 ROS 网络的模块化和中心化分析上,通过使用链接聚类分析方法和多种中心化分析方法,我们确定了 ROS 网络的生物功能模块和关键蛋白质。 相似文献
9.
基于关键功能模块挖掘的蛋白质功能预测 总被引:1,自引:0,他引:1
精确注释蛋白质功能是从分子水平理解生物体的关键.由于内在的困难和昂贵的开销,实验方法注释蛋白质功能已经很难满足日益增长的序列数据.为此,提出了许多基于蛋白质相互作用(Protein-protein interaction,PPI)网络的计算方法预测蛋白质功能.当今蛋白质功能预测的趋势是融合蛋白质相互作用网络和异构生物数据.本文提出一种基于多关系网络中关键功能模块挖掘的蛋白质功能预测算法.关键功能模块由一组紧密联系且共享生物功能的蛋白质组成,它们能与网络中的剩余部分较好地区分开来.算法通过从多关系网络的每一个简单网络中挖掘高内聚、低耦合的子图形成关键功能模块.关键功能模块中邻居蛋白质的功能用于注释待预测功能的蛋白质.每一个简单网络在蛋白质功能预测中的重要性各不相同.实验结果表明,提出的方法性能优于现有的蛋白质功能预测方法. 相似文献
10.
研究蛋白质相互作用网络的演化机制及模型对于理解生物系统的进化及组织形成过程具有重要的意义。到目前为止,已经出现了多种依赖不同演化机制的蛋白质相互作用网络演化模型,这些模型有针对性地体现了真实蛋白质相互作用网络中出现的某些拓扑特征,但同时也具有一定的局限性。通过对典型蛋白质相互作用网络演化模型进行研究,从模型的构建机理、演化模型及真实蛋白质相互作用网络的拓扑特征等方面进行了分析和比较,并总结了各个模型的特点。最后,对蛋白质网络演化模型的进一步发展提出了自己的看法,为深入理解蛋白质相互作用网络演化模型提供有益参考。 相似文献
11.
A Distributed Framework for Large-scale Protein-protein Interaction Data Analysis and Prediction Using MapReduce 下载免费PDF全文
Lun Hu Shicheng Yang Xin Luo Huaqiang Yuan Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》2022,9(1):160-172
Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interaction(PPI)data have been generated,making it very difficult to analyze them efficiently.To address this problem,this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms,i.e.,CoFex,using MapReduce.To do so,an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction.Respective solutions are then devised to overcome these limitations.In particular,we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins.After that,its procedure is modified by following the MapReduce framework to take the prediction task distributively.A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy.Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy. 相似文献
12.
蛋白质复合体在生物过程中具有重要的作用,从蛋白质互作用网络中进行蛋白质复合体检测是后基因时代的一项具有挑战性的任务。种子扩展方法是一种从蛋白质互作用网络中进行重叠蛋白质复合体检测的有效技术。然而,现有方法面临两方面的问题:1)在选择种子结点时通常仅仅考虑了网络中结点的直接邻居之间的连接紧密度,难以充分体现结点在局部邻域子图内的重要性;2)在簇的扩展过程中假设候选结点之间是相互独立的,忽略了候选结点的添加顺序可能对聚类结果带来的影响。为了解决以上问题,文中基于生物网络同配性提出了一种重叠蛋白质复合体检测算法。该算法利用结点的二阶邻域信息来度量结点的重要性,进而选择种子结点,在簇扩展过程中利用同配性实现多个候选结点的批量添加。为了对重叠聚类结果进行评价,提出了一种重叠复合体评价指标F-overlap。与其他复合体检测算法在蛋白质互作用数据集上的对比实验结果表明,所提算法能够有效地进行重叠蛋白质复合体检测。 相似文献
13.
蛋白质相互作用网络(Protein-Protein Interaction,PPI)聚类结果的评价方法的研究是检测PPI网络功能模块聚类结果正确与否的关键。介绍并分析了4种有代表性的PPI网络聚类的评价方法,即p-value、匹配统计量、基于准确率和查全率的综合评价以及基于层结构的hF-measure,在此基础上考虑了主错误划分类与该预测类的相似性,提出了新的罚分函数和新的Sf-measure评价方法。仿真结果表明了各评价方法的特点及Sf-measure评价方法的有效性及合理性。 相似文献
14.
15.
生物网络比对是研究生物进化过程的重要手段,不同物种间的比对不仅有助于理解物种的知识转移,同时也有助于进行功能预测和检测保守功能成分。然而,现有比对算法很难实现拓扑度量和生物度量同时最优。设计JAlign算法,将拓扑相似性与归一化序列相似性相结合构成目标函数,基于种子-扩展算法和模块检测进行全局比对。在种子筛选阶段,利用Jerarca聚类算法划分功能模块,借助目标函数计算模块间的相似性进行最优模块匹配,并从匹配结果中提取部分节点对作为种子节点。在扩展阶段,将比对从种子节点扩展至其邻居节点,在选择节点对进行扩展比对时综合考虑节点之间的连接关系、度差值、节点相似性等因素。在此基础上,为避免遗漏分散节点,找到剩余未匹配的节点构建二分图,以贪心方式进行最大加权二分图匹配,并将匹配结果合并到比对集合中,完成最终匹配。实验结果表明,JAlign算法能够实现拓扑度量和生物度量的良好平衡,其边正确性指标、诱导保守子结构得分、对称子结构得分和生物质量使用功能一致性指标均优于L-GRAAL、SPINAL和ModuleAlign算法,在时间效率上也具有优势。 相似文献
16.
人-物体交互检测(HOI),就是把图像作为输入,检测出图像中存在交互行为的人和物体以及他们之间的交互动词。它是计算机视觉范畴里继目标检测、图像分割和目标跟踪之后又一新任务,旨在对图像进行更深层的理解。针对目前基于深度学习的HOI检测综述性文章的空白,以HOI检测方法的发展历程为主线,对基于深度学习的HOI检测方法进行了分类与分析。首先简要总结了早期的技术方法,然后根据模型结构将现有算法分为两阶段方法和一阶段方法并对一些代表性算法进行分析介绍。将两阶段方法分为融入注意力、图模型以及姿势和身体部位三类进行重点论述,总结了每类方法的基本思想与优缺点。此外,还详细介绍了HOI检测任务的实验评价指标、基准数据集和大多数现有方法的实验结果,对不同类别的方法取得的结果进行说明。最后对该技术面临的主要挑战进行总结分析并对未来发展趋势进行展望。 相似文献
17.
YOLOx-Darknet53是以YOLOv3为基准增加各种技巧(trick)升级改进的检测网络,但其仍然是以Darknet53为特征提取骨干网络(backbone),因此网络的特征提取能力仍有欠缺.本文依据CoTNet中的注意力机制改进得到CoA (contextual attention)模块,并将其替代YOLOx骨干网络残差块里的3×3卷积,得到融合注意力后的新残差块,加强了骨干网络的特征提取能力,并在Pascal VOC2007数据集上进行对比实验,融合CoA模块的网络比原网络的平均精度均值AP@[.5:.95]高1.4, AP@0.5高1.4;在改进骨干网络后的YOLOx检测头前加入无参3D注意力模块,得到最终改进的检测网络,进行上述对比实验,结果表明比原网络的AP@[.5:.95]高1.6,AP@0.5高1.5.因此,改进后的网络比原网络检测更加精准,在工业应用中能达到更好的检测效果. 相似文献