首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
为了避免支持向量机预测结果易受惩罚因子和核函数参数参数选择的影响,提出一种DA算法优化SVM的电能质量扰动诊断和识别模型,实现电能质量扰动最优化诊断和识别。首先运用EMD将电能质量扰动信号进行分解,之后计算各尺度下的IMF分量的样本熵,并将其作为电能质量扰动信号的特征向量,建立SVM的电能质量扰动信号的识别模型。实验结果表明,与GA_SVM、PSO_SVM和DE_SVM相比,本文提出的算法DA_SVM可以有效提高电能质量扰动识别的准确率,收敛速度快,为电能质量扰动诊断和识别提供新的方法和途径。  相似文献   

2.
电力系统中海量暂态扰动的分析与治理需要以高效准确的扰动分类为基础。现有扰动识别方法缺少合理的特征选择环节,分类器过于复杂,不能满足高效分类的需要。提出一种新的电能质量扰动特征选择方法。首先,对原始信号使用S变换进行预处理,提取具有代表性的25种扰动信号特征构建原始特征集合;然后,根据极限学习机识别准确率构造用于扰动特征选择的遗传算法适应度函数;最后,用遗传算法来进行迭代运算,确定最优特征集合。实验证明,新方法能够有效去除冗余特征,在保证分类准确率前提下,有效降低分类器复杂度,提高分类效率。  相似文献   

3.
凌万水  刘刚 《电气传动》2021,51(17):18-22
对电能质量事件(PQE)的识别是维持智能电网稳定工作的基础.从模式识别角度出发,提出一种快速准确的PQE检测算法.算法包括特征选择与决策两个阶段.在第1阶段,主要基于直方图方法,该方法可以检测出大多数PQE类,同时与基于离散小波变换(DWT)的技术结合,使用多尺度分析以提高性能.在第2阶段,使用极限学习机(ELM)对P...  相似文献   

4.
电能质量扰动的分类识别对电能质量综合治理具有重要意义,为此提出了一种基于粒子群优化极限学习机的电能质量扰动分类新方法。利用小波变换将扰动信号做10层分解,提取有效区分扰动信号类型层数的能量差、能量差平均值及能量差的标准差作为特征向量,并将扰动信号与正常信号的均方根作为补充,减少输入向量维度。提出采用极限学习机训练误差作为粒子群的适应度函数来优化隐含层神经元个数,在提升分类速度的基础上保持较高的分类精度。经仿真验证表明,该方法能够准确有效地识别常见的7种扰动类型,相比于传统的BP神经网络具有较高的分类速度。  相似文献   

5.
利用小波变换(WT)和极值学习机(ELM)对电能质量事件(PQE)进行识别分类,利用离散小波变换(DWT)对信号进行多分辨率分析,获得PQ信号的特征能量系数,并在25、35、45dB噪声环境下,构造了3种PQ数据集。ELM是一种有效的广义单隐层前馈网络(SLFNs)学习算法,可用于识别各种多分类问题。对比试验与现有方法结果,证明基于小波变换的极限学习机能对8种扰动进行有效分类,具有鲁棒性强的识别结构,可用于实际电力系统信号分类。  相似文献   

6.
基于小波熵和小波熵权的电能质量扰动识别   总被引:4,自引:0,他引:4  
电力系统中电能质量扰动信号的分类和识别一直是国内外众多学者研究的热点问题。小波分析是具有时频局部化特性的时频分析方法,在此基础上定义的小波熵具有较好的定量特征提取能力。基于此,在给出小波熵、小波相对熵和小波熵权的基本原理和定义的基础上,文章提出利用小波熵和熵权两种测度来分类和识别电能质量扰动信号,建立了各种扰动的仿真模型,对电压突降、突升、中断,振荡暂态、脉冲暂态、电压尖峰、缺口、谐波等扰动类型进行了系统的仿真分析。结果表明,不同类型扰动信号的小波熵及熵权具有不同的定性规律,小波熵及小波熵权对电能质量扰动具有一定的分类识别能力。  相似文献   

7.
准确识别扰动信号类型对分析和治理电能质量问题具有重要意义。文中提出一种基于粒子群优化匹配追踪算法(PSO-MP)和RBF神经网络的电能质量扰动识别方法。首先,构建工频原子库将工频信号提取出来,得到的残余信号能更好地体现扰动信号差异性;再利用PSO优化匹配追踪算法以减小计算量,并结合离散Gabor原子库对残余扰动信号进行稀疏分解,准确提取其原子参数;最后将原子参数以及残余信号在原子上的投影的均值和标准偏差作为特征量,利用RBF神经网络对扰动信号进行识别。仿真算例表明,该方法能够有效地识别几种常见的电能质量扰动,且具有抗噪性能强、计算量小等优点。  相似文献   

8.
电能质量扰动信号识别是电能质量扰动参数分析、扰动源定位和综合治理的前提。针对S变换在电能质量扰动信号分析中特征表现能力不足,以及极限学习机随机设置输入权值和隐藏层阈值造成识别准确率低的问题,提出一种基于广义S变换(generalized S-transform,GST)和粒子群(particle swarm optimization,PSO)优化极限学习机(extreme learning machine,ELM)的电能质量扰动信号识别新方法。首先,将粗调、微调和精调因子引入S变换的高斯窗函数中,并根据扰动信号的频率特点调整各因子值,从而获得更具针对性的时-频分辨率,以增强特征表现能力。其次,利用PSO的寻优能力,获取最大适应度时对应的输入权值和隐藏层阈值,提升ELM的识别准确率。最后,根据GST时-频模矩阵生成特征集,对PSO-ELM进行训练并测试其识别能力。对比实验表明,相较于S变换和ELM方法,本文提出方法识别准确率更高、抗噪性更强,能够满足工业环境下的电能质量扰动信号识别需要。  相似文献   

9.
电能质量对于电力系统的稳定至关重要,谐波作为电能质量中最常见的扰动源,切实有效的谐波检测算法可以提高电能质量。针对传统算法无法有效识别突变谐波、解析精度低等问题,提出了一种基于改进灰狼优化算法(Improved Grey Wolf Optimizer, IGWO),变分模态分解(Variational Modal Decomposition, VMD)和离散小波算法(Discrete Wavelet Transform, DWT)相结合的电能质量扰动检测模型。该模型首先利用改进灰狼优化算法优化变分模态分解算法中的固有模态函数(Intrinsic Mode Function, IMF)分解个数和惩罚因子,使得变分模态分解能够适应故障谐波特征;然后将优化过的变分模态分解算法去解析故障谐波,分解出不同的IMF分量;最后通过离散小波算法进一步降噪和解析各个IMF分量,实现对故障谐波的检测和分析。通过算例表明,该模型对于不同的故障谐波检测,特别是突变含噪声故障谐波,分析精度高于传统单一识别算法,也高于一些新型智能算法。  相似文献   

10.
电力系统中电能质量扰动分类特征选择标准不统一、泛化能力差、分类效果与分类效率有待提高。为了解决这些问题,一方面,引入多层极限学习机自编码器,优化输入权重,完成电能质量扰动信号的特征提取。另一方面,引入多标签排位分类算法,充分考虑各标签之间的相关性,完成电能质量扰动的分类。基于两种算法,设计出基于多层极限学习机的多标签分类模型,并得到多层极限学习机的最优网络结构和多标签分类的最佳分类阈值。实验结果表明,所提方法适用于电能质量单一扰动和复合扰动的分类,改善了分类效果和分类效率,具有较高的分类精度、良好的抗噪能力和泛化能力。  相似文献   

11.
基于样本熵和极端学习机的超短期风电功率组合预测模型   总被引:4,自引:0,他引:4  
该文提出一种经验模态分解(empirical mode decomposition,EMD)–样本熵(sample entropy,SE)和极端学习机(extreme learning machine,ELM)相结合的风电功率超短期预测方法。该方法首先利用EMD-SE将风电功率时间序列分解为一系列复杂度差异明显的风电子序列;其次利用最小二乘支持向量机(least squares support vector machine,LSSVM)、极端学习机和经原始岭回归(primal ridgeregression,PRR)改进的极端学习机(PRR-ELM)对各子序列建立组合预测模型,并采用交叉验证法和重构相空间法确定各模型的参数和输入向量维数,以提高各组合模型的预测精度;最后以某一风电场实际采集的数据为算例,结果表明基于EMD-SE理论的ELM和PRR-ELM组合预测模型在预测精度和训练速度上都明显优于EMD-SE理论和LSSVM的组合模型,且其预测结果更接近于真实值,为实现风电功率在线的较高精度超短期预测提供了可能。  相似文献   

12.
为提高熵方法输电线路故障信号时-频域的特征提取能力,提出层次化变步长Tsallis小波奇异熵(Tsallis Wavelet Singular Entropy, TWSE)方法用于电力系统故障诊断。首先,对采集到的电压信号进行小波分解与单支重构,构建时-频矩阵;之后,将奇异值分解与Tsallis熵理论相结合,对该时-频矩阵求滑动步长为1的Tsallis奇异熵,确定故障发生时刻;然后,对故障发生后1周期内的三相电压重构系数求滑动步长为1/4周期的TWSE,构建用于故障诊断的特征向量;最后,将TWSE特征向量输入到极限学习机(Extremly Learning Machine, ELM)分类器中,实现输电线路故障诊断。仿真结果表明,新方法具有更好的故障暂态信号特征表现能力,且分类结果不受故障时间、过渡电阻和故障位置等因素影响,相较基于小波奇异熵的线路故障诊断方法具有更好的诊断效果。  相似文献   

13.
提出一种基于鲸鱼算法优化极限学习机的微电网故障诊断方法。首先利用小波包分解对三相故障电压进行分析,计算小波包能量熵组成特征向量作为数据样本;然后通过鲸鱼算法优化极限学习机建立诊断模型对故障类型进行识别和诊断。最后利用鲸鱼算法优化极限学习机的输入权值和隐层神经元阈值,解决了输入权值和隐层神经元阈值随机初始化易影响网络性能的问题,可进一步提高网络的学习速度和泛化能力,有利于进行全局寻优。仿真结果表明,与BP神经网络、RBF神经网络和ELM相比,基于鲸鱼算法优化极限学习机建立的故障诊断模型学习速度更快、泛化能力更强、识别精度更高。  相似文献   

14.
针对风电功率的不确定性、随机性以及已有的风电功率点预测无法反应其不确定性信息的问题,提出了基于局部特征尺度分解(LCD)-样本熵(SE)和改进鲸鱼优化算法(IWOA)优化核极限学习机(KELM)的短期风电功率区间预测模型.采用LCD分解来降低原始风电功率序列的非平稳性,通过测量各ISC分量的样本熵来重构新的序列以降低过...  相似文献   

15.
为了有效解决管道泄漏信号难以从复杂背景噪声中分离以及微小泄漏特征提取困难的问题,提出一种基于VMD和ELM的管道微小泄漏工况识别的方法。首先,利用霜冰优化算法RIME改进VMD的关键参数选取,实现VMD的自适应分解。采用VMD分解产生的各阶本征模态函数之间的互信息熵值作为RIME算法参数优化中的适应度函数值,选择最佳的VMD分解参数,建立基于RIME-VMD的管道泄漏信号去噪方法。在此基础上,计算得到的滤波信号的Bubble熵值,实现对管道微小泄漏特征提取的目的。最终,将特征输入到RIME-ELM模型中进行中,实现了4种不同管道工况的识别。实验结果表明,RIME-VMD方法在滤波效果方面表现优异,其信噪比最高,达23.922 dB,说明其滤波后的重构信号中有效信号的占比最大。同时,该方法的平均绝对误差和均方误差分别为0.187和0.056,均为最小值,表明该方法重构信号中的噪声最少。将得到的故障特征向量输入到RIME-ELM模型后,分类准确率达到了95.71%,相比将故障特征向量直接输入ELM模型提高了37.4%,验证了所提出方法的有效性。  相似文献   

16.
为提高风电功率预测精度,提出一种基于变分模态分解(variational mode decomposition, VMD)和改进多元宇宙算法(improved multiverse optimization, IMVO)优化极限学习机(extreme learning machine, ELM)的组合预测方法。首先借助VMD算法将原始风电数据分解为模态分量,并根据互信息熵划分为高、低频分量以简化数据。然后在传统多元宇宙算法基础上通过引入Tent混沌映射、指数型旅行距离率以及精英反向学习机制进行改进,并与ELM相结合得到IMVO-ELM预测模型。最后将高频、低频分量预测结果叠加,得到最终预测结果。仿真结果表明,IMVO-ELM模型预测精度、收敛速度对比ELM、MVO-ELM、PSO-ELM方法具有一定的优越性。且在借助VMD算法的数据预处理下,预测精度得到进一步提高,验证了所提组合预测方法的有效性。  相似文献   

17.
针对模拟电路的故障诊断和定位问题,为进一步提高故障诊断准确率,提出了一种基于连续小波Tsallis奇异熵和超限学习机的故障诊断方法。首先应用连续小波变换计算被测电路时域响应信号的时频系数矩阵,然后将其分割为8个相同大小的子矩阵,分别计算每个子矩阵的Tsallis奇异熵,组成特征向量,最后将特征应用于超限学习机多类分类器进行区分。仿真结果表明,故障诊断方法能较好地获取故障响应信号的本质特征,并具有较其他现存方法更高的故障诊断正确率。  相似文献   

18.
电能质量扰动信号分类对电能质量综合评估、扰动源定位治理具有重要意义。提出了一种基于广义S变换和差分进化优化极限学习机的电能质量扰动信号分类方法。首先,通过改变S变换在不同频段的窗宽因子,来提高特征表现能力;然后,采用极限学习机作为扰动分类器,引入具有全局寻优功能的差分进化算法,优化极限学习机输入权值和隐藏层结点偏置,增强极限学习机的泛化能力,提高分类准确率。最后,仿真对比实验表明,相比于支持向量机和极限学习机,文中新方法准确率高、抗噪性强,更适用于电能质量扰动识别工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号