首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
开路电压(OCV)与内阻(R)是采用等效电路模型表述锂离子电池外特性时的重要参数,被用于分析电池功率特性、一致性、老化等问题。两者是电池荷电状态(SOC)、电流I和电池温度Tbat的非线性函数,难以详细、快速、准确、同时地估计。提出一种基于电池实验和数据处理的OCV与R估计方法。设计了一组多环境温度下的恒电流实验以得到详细的数据,并使用大电流以减少实验时间;基于电池机理设计了一套实验数据处理方法,解决了电池工作中SOC与Tbat同时变化且耦合的问题并考虑了电池的非线性特性,从而准确、同时地估计出OCV{SOC,Tbat}和R{SOC,I,Tbat}曲线。与现有方法相比,该方法实验时间短、估计精度高、估计结果信息丰富,从而更适用于容量增量分析等电池老化研究。实验验证了该方法的有效性。  相似文献   

2.
锂离子电池(LiB)的开路电压Uoc和内阻R是对LiB进行特性评估的重要参数.由于两者与LiB的荷电状态(SOC)、电流I及温度T呈非线性耦合关系,难以为工程应用建立一个参数(Uoc,R)相对于这些变量的准确的解析模型.该文提出一种工程性建模方法,旨在建立参数(Uoc,R)与LiB常用恒流工况范围内的变量(SOC,I,T)之间的映射关系.该方法首先在LiB常用工况范围内设计多个恒流工况实验以获取包含变量(SOC,I,T)典型信息的实验数据;其次采用一套数据处理方法解决LiB运行中SOC与T同时变化问题,并测算典型工作点{SOC,I,T}下的(Uoc,R);最后分析SOC、I、T到Uoc及R的映射关系,并构建开路电压模型Uoc(SOC,T)和内阻模型R(SOC,I,T).与现有方法相比,该方法建立的模型涉及的工况全面、实验时间短、参数估计精度高,适用于LiB工程应用和特性研究.实验结果验证了该方法的有效性.  相似文献   

3.
《蓄电池》2015,(4)
铅酸蓄电池在电动汽车和蓄电池储能系统等领域有着广泛的应用,提高铅酸蓄电池荷电状态(SOC)估算的精度具有重要的意义。本文针对目前SOC估算方法中电池等效模型复杂、相关参数难以确定等问题,提出了一种新型高阶非线性拟合开路电压的SOC估计方法,通过拟合恒流充放电工况下的开路电压(OCV)–SOC曲线,建立适用于变电流充放电工况下的铅酸蓄电池模型,并结合扩展卡尔曼滤波算法(EKF)对电池的SOC进行估算。仿真和实验结果表明该方法能够实现铅酸蓄电池的高精度SOC估算。  相似文献   

4.
程泽  李智  孙幸勉 《电源学报》2019,17(1):87-94
针对锂离子电池在电流状态突然变化时产生的松弛现象和滞回现象,在分析了电池等效电路模型的基础上,引入线性滤波器和滞回模块,建立了电池的自校正模型。通过恒流脉冲实验和动态应力工况测试验证自校正模型在对电池电压特性跟随的可靠性,并在该模型的基础上使用有限差分扩展卡尔曼滤波FDEKF(finite difference extended Kalman filter)算法实现了电池的荷电状态SOC(state of charge)估计。实验分析表明,自校正模型能较好地体现电池的动态特性,并使SOC估计保持很好的精度。  相似文献   

5.
以锂电池电化学-电路等效组合模型为基础,研究电池荷电状态(SOC)和健康状况(SOH)联合估计算法。电池组合模型包含电化学等效模型和电路等效模型两部分,两个RC并联电路分别表示电池工作过程中的瞬态响应和稳态响应。针对电池模型参数和性能参数的非线性特征,提出基于滑动窗滤波模型的非线性参数估计方法,该方法适用于锂电池的管理系统。同时,在模型参数和性能参数估计值的基础上,提出基于Kalman算法的电池SOC/SOH自适应在线联合估计方法。实验结果显示,新算法较好地解决了锂电池非线性模型引起的计算误差,保证电池SOC/SOH估计结果的实时性和有效性。  相似文献   

6.
《电池》2020,(1)
提出一种基于自适应扩展卡尔曼滤波(AEKF)算法的锌镍单液流电池荷电状态(SOC)估计方法。建立二阶等效RC电路模型,并提出AEKF算法,对锌镍单液流电池进行参数辨识,再在不同的SOC初值情况下以14 A的电流进行恒流脉冲充放电实验,进一步验证AEKF算法。提出的AEKF算法能准确地估计SOC,估计误差小于2%,能在SOC初始值错误的情况下进行快速修正,具有较强的适应性。  相似文献   

7.
封居强  孙亮东  蔡峰  伍龙  卢俊 《电源技术》2022,(11):1270-1274
电池的荷电状态(SOC)是电池管理系统(BMS)的重要指标,然而锂离子电池是一个具有复杂性噪声特点的非线性动态系统,精准估计SOC十分困难。针对无迹卡尔曼滤波(UKF)估计SOC时受模型精度和系统噪声预定变量影响较大问题,基于改进的PNGV模型提出一种两次非线性变换预测系统闭环端电压方法,采用动态函数提高卡尔曼增益,从而提高SOC估计精度和效果。通过充放电混合动力脉冲能力特性(HPPC)和混合放电比实验验证可得该方法具有良好的估计效果,在电压和电流变化剧烈的条件下,平均绝对误差为0.11%,精度相对提高了58%,均方根误差为0.15%,稳定性相对提高了63%。  相似文献   

8.
针对现有镍氢电池荷电状态(SOC)估计方法因精确度太低或者对数据、模型参数要求太高而难以实用的问题,提出一种基于4维Map图的电池SOC估计方法.通过大量实验数据,建立镍氢电池SOC与温度、电流和端电压之间的基本Map图,发现在其工作区间20%≤YSOC≤80%内,不同电流、温度条件下的相邻充放电特性曲线基本相互平行.以SOC与端电压之间的关系为基础,分别在电流和温度方向上采用曲线平移的方式插值得到SOC与电流、温度、电压之间的4维Map图模型.利用试验数据进行SOC估计试验,试验结果表明,利用4维Map图模型的SOC估计误差在3%以内,基于4维Map图的镍氢电池SOC估计方法能满足电动汽车电池SOC估计在精确度和易实现性上的要求.  相似文献   

9.
锂离子电池组容量和内部参数随温度变化明显,在不同温度下准确估计电池电荷状态(state of charge,SOC)是电动汽车电池管理系统研究的关键技术。基于Thevenin模型,采用无损卡尔曼滤波(unscented Kalman filtering,UKF)实现不同温度和不同放电电流条件下对锂离子电池组SOC的估计。实验研究表明,UKF算法适应不同放电电流下的电池SOC估计。随着温度降低,虽然UKF方法对锂离子电池组SOC估计的收敛速度变慢,但对初始误差有较强的修正作用,且有较高的稳态精度。因此,UKF方法适合不同温度和放电电流下对锂离子电池组SOC的估计。  相似文献   

10.
为解决矿井复杂环境下电机车锂离子电池的过充或过放对电池产生不可逆的容量损耗问题,提出一种基于有限差分双扩展卡尔曼滤波(FDDEKF)矿用电机车锂离子电池容量与荷电状态(SOC)协估计框架。针对扩展卡尔曼滤波器(EKF)线性化误差问题,采用有限差分改进DEKF。基于二阶电阻-电容(RC)模型,利用遗忘因子递推最小二乘法(FFRLS)进行模型参数辨识,基于时变的模型参数,利用改进DEKF对容量和SOC在分离时间尺度上实时在线估计。不同工况下实验结果表明,该方法能有效提高电池SOC的估计精度,与恒流工况相比,该方法在动态电机车工况下更适用,SOC估计均方根误差降低了0.65%,SOC估计最大绝对误差降低至0.38%。  相似文献   

11.
电动汽车动力电池变流放电特性与荷电状态实时估计   总被引:9,自引:3,他引:9  
通过对电动汽车常用的铅酸动力电池大电流变流放电实验数据与特性的研究,建立以能动势和计算等效内阻为基本参数的电池动态模型,并得到了当电池放电电流大于某一特定临界电流时电池等效内阻趋于稳定的规律。基于这一重要规律,实现了以能动势为依据来估计电池荷电状态(SOC)的方法。该方法在电池大电流放电时,可以仅根据放电电流和在线端电压来估计SOC.分析和初步实验表明,这种电池SOC估计方法简单易行,实时性强,应用前景良好.  相似文献   

12.
张宵洋  陈康义  吴新波 《电源技术》2022,(10):1156-1160
电池极化效应、随机干扰以及电池在整个寿命周期内高度非线性和动态特性,给电池荷电状态(SOC)在线精确估计带来了许多挑战。等效模型的精确表达与估计算法的优化设计是提高SOC估计精度的两大重要技术路线。对此,提出了基于分数阶模型自适应扩展卡尔曼粒子滤波(FOAEPF)的SOC估计方法。对分数阶模型(FOM)的二项式系数的求和项进行了适当的截断,从而得到了能够有效降低计算量的简化分数阶模型。然后运用AEPF算法估计电池的SOC。自适应扩展卡尔曼滤波被用作粒子滤波算法的建议分布函数,不但解决了粒子滤波算法的粒子退化问题,而且能够充分结合两类算法的优势实现二次滤波。多组实验的测试结果表明所提出的方法在削减计算负担的基础上,能够进一步提高电池SOC估计精度与鲁棒性。  相似文献   

13.
针对铅酸蓄电池在工程应用中其荷电状态(SOC)难以准确估计的问题,本文结合常见的等效电池模型,采用等效电动势法对蓄电池SOC进行了实时估计。与普遍应用的恒参数的电池模型不同,本文通过统计辨识的手段,在不同SOC状态下以及不同的放电倍率条件下对等效模型进行了二维参数辨识。辨识结果表明,电池模型参数在不同的SOC状态下以及不同的放电倍率条件下均存在着较大差别;采用这种二维参数辨识方法估计出的电池SOC能够更加准确地跟踪电池的实际SOC。试验测试验证了这一SOC估计策略的准确性和实用性。  相似文献   

14.
针对复杂工况时纯电动汽车磷酸铁锂(LiFeP04)电池内部化学反应复杂、纯电路机理模型难以准确地进行荷电状态(SOC)估计的问题,使用动力学电池模型(KiBaM)和二阶RC等效电路模型相结合的混合模型,充分考虑到电池放电过程中存在恢复效应和电流倍率效应,最终使一个模型能同时捕捉到动态的非线性容量效应和电路参数特征,从而获得更加准确的SOC估计和电池运行时间预测,并通过试验进一步证明了其准确性较高。  相似文献   

15.
锂离子电池放电起动瞬间电压陡降以及放电停止后电压回升使开路电压和实时电压关系难以确定,进而导致常规方法无法准确估算荷电状态(State of Charge,SOC)。从能量角度提出一种应用于电池放电过程中估算SOC的新方法。首先构造带有非线性受控源的双电源模型,然后根据电池电量特性进行模型参数辨识。通过对锂离子电池进行恒流、变流和模拟工况放电过程中的SOC预测,对比模型预测和实测SOC可看出,该方法能够准确模拟电池电量特性,精准估算电池SOC。  相似文献   

16.
BP神经网络预估锂离子电池SOC训练数据选择   总被引:1,自引:0,他引:1  
封进 《电源技术》2016,(2):283-286
采用BP神经网络对电动汽车用动力锂离子电池荷电状态(SOC)预估进行研究,分析了BP神经网络的模型原理及锂离子电池极化现象。对比采用恒流实验数据训练BP神经网络,提出改进BP神经网络训练数据选择方法,以适应变电流的实际循环中,锂离子电池因极化现象而产生的动态非线性,并进行了电池SOC值的预估。实验表明,采用改进训练数据训练的BP神经网络,在电流剧烈变化的实际工况环境下具有更高的SOC预估精度。  相似文献   

17.
磷酸铁锂动力电池是矿用救生舱的重要组成部分,其电荷状态(SOC)估计的准确性直接影响避难人员的安危。针对电池SOC常用估算方法的不足,提出一种基于自适应卡尔曼滤波的矿用救生舱动力电池SOC估算方法。在电池特性分析的基础上,建立了更符合实际的改进二阶RC等效电池模型和电池的状态空间模型。通过脉冲放电实验和改进的带遗忘因子递推最小二乘算法,对模型参数进行在线辨识,并将自适应卡尔曼滤波算法(AKF)用于此模型,在线估计电池的SOC。实验结果表明:AKF可以实时修正模型误差,实时估计SOC的动态变化,估算精度高,能够满足矿用救生舱电池管理系统的要求。  相似文献   

18.
卢云帆  邢丽坤  张梦龙  郭敏 《电源技术》2022,(10):1151-1155
锂电池荷电状态(SOC)的精确估计是电动汽车安全行驶的保障。为了降低实际复杂工况下电池模型不契合实际电池参数时变特性造成的误差,采用无迹卡尔曼滤波算法(UKF)对电池模型进行在线参数辨识,再联合自适应无迹卡尔曼滤波算法(AUKF)估计锂电池SOC,将时变参数反馈到SOC估计的模型中,提高SOC估计精度和对各工况适应性,UDDS工况下通过与离线扩展卡尔曼滤波算法(EKF)、在线双扩展卡尔曼滤波算法(DEKF)进行比较分析,实验结果验证了UKF-AUKF的精确性和鲁棒性。  相似文献   

19.
优化电池模型的自适应Sigma卡尔曼荷电状态估算   总被引:1,自引:0,他引:1  
采用数学模型法对磷酸铁锂电池进行非线性建模,优化了状态模型及观测模型。模型考虑了充放电倍率、温度、老化循环寿命等因素,对电池松弛效应及极化现象影响进行建模补偿,提高了电池建模的准确度,降低了不同条件下因电池模型造成电池荷电状态(SOC)估算的误差影响。在电池模型参数辨识基础上,提出采样自适应Sigma卡尔曼算法构建SOC估算模型,按照非线性模型对状态变量的分布构建Sigma采样序列,采用模型输出残差更新噪声协方差,赋予Sigma采样序列最优估计及噪声的权值,并实现误差量的实时更新,降低计算复杂度。通过持续大电流、间断电流、变电流放电及充电实验条件下的SOC估算对比实验,验证了自适应Sigma卡尔曼算法快速收敛性,数学描述更准确,具备较高的SOC的观测准确度。  相似文献   

20.
蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线 SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线 SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进 EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线 SOC 的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后 EKF方法的 SOC 估计误差小于0.5%,估计精度获得明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号