共查询到17条相似文献,搜索用时 604 毫秒
1.
动作识别使得机器能够对人体动作的意图进行判别理解,进而实现高效的人机交互。提出一种肢体角度模型,实现在三维空间中对人体动作进行表示,该模型具有一定的不变性,计算复杂度低。针对传统的基于混合高斯的隐马尔可夫模型(GMM-HMM)的动作识别,提出深度置信网络模型(DBN)和隐马尔可夫模型相结合的动作识别模型,构建了一种非线性的基于条件限制玻尔兹曼机(CRBM)的DBN深度学习模型,深层次结构使其建模能力更强,且能够结合历史信息建模,更适用于动作识别。实验表明该算法具有较高的识别结果。 相似文献
2.
为实现互联网上大量背景复杂、视点变化的视频中人体动作的识别,提出了一种使用无监督的深度信念网络(DBNs)进行人体动作识别的创新方法.该方法采用深度信念网络(DBNs)和受限玻耳兹曼机进行无约束视频的动作识别,利用无监督深度学习模型自动提取合适的特征表示,不需要任何先验知识.在一个具有挑战性的UCF体育数据集上进行实验,证明了该方法准确有效.同时该方法也适用于其他视觉识别任务,并在未来可扩展到非结构化的人体活动识别. 相似文献
3.
由于工业生产中所获取的焊缝缺陷图像背景较为复杂,对其分类识别效率较低,因此提出了一个由三层受限玻尔兹曼机叠加组成的深度置信网络模型.该网络模型在对焊缝原始图像进行更为全面的信息抽取前提下,能够借助深度置信网络自下而上对输入信息进行学习与训练的特点,逐渐减少对焊缝缺陷信息的误判;借助网络最后一层后向传播算法的作用,可以在确保更高正确率的同时缩短收敛时间,有效提升识别效率;通过与传统的支持向量机和人工神经网络进行对比实验,结果表明深度置信网络能更为有效地避免过拟合的发生,对于焊缝缺陷的特征识别具有更为理想的精度. 相似文献
4.
针对现有旋转机械在线故障诊断算法所存在的数据遍历耗时长,检测准确率低,故障分类准确率低等不足,提出一种基于深度置信网络的故障诊断算法。先基于受限的玻尔兹曼机搭建深度置信网络框架,利用数据标签在输入层和后端的受限玻尔兹曼机之间建立联系;然后利用k-means算法压缩聚类处理数据集降低数据集的规模和复杂度;最后在不同故障特征的分类诊断方面,引入加入核函数的SVM分类算法,提升对不同机械故障类型的分类精度。实验结果显示,提出的旋转机械故障在线诊断方案的迭代效率高,数据遍历耗时少,训练集和测试集 F1指标的分别为97.9%和97.4%,训练集和测试集结果相对于三种传统诊断算法分别提升了3.70%、4.37%、4.82,和3.95%、4.50%和4.50%。 相似文献
5.
传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网络无论在准确率还是学习效率上都无法得到进一步提升。针对以上问题,提出一种基于稀疏降噪自编码器(SDAE)的深度网络模型,其核心是稀疏降噪自编码器对数据的特征提取。首先,训练稀疏降噪自编码;然后,用训练后得到的权值和偏置来初始化深度置信网络;最后,训练深度置信网络。在Poker Hand 纸牌游戏数据集和MNIST、USPS手写数据集上测试模型性能,在Poker Hand数据集下,方法的误差率比传统的深度置信网络降低46.4%,准确率和召回率依次提升15.56%和14.12%。实验结果表明,所提方法能有效地改善模型性能。 相似文献
6.
建立以受限玻尔兹曼机(restricted Boltzmann machine,简称RBM)为基石的深度网络模型,是深度学习研究的热点领域之一.Point-wise Gated受限玻尔兹曼机(point-wise gated RBM,简称pgRBM)是一种RBM的变种算法.该算法能够在含噪声的数据中自适应地找到数据中与分类有关的部分,从而实现较好的分类结果.假设一组数据中有噪声数据和干净数据,如何应用不含噪声的数据提升pgRBM的性能,是一个重要的研究问题.针对这一问题,首先,在传统的pgRBM基础上提出一种基于随机噪声数据与干净数据的Point-wise Gated受限玻尔兹曼机(pgRBM based on random noisy data and clean data,简称pgrncRBM)方法,其网络中与分类有关权值的初值是通过不含噪声的数据学习得到的,所以pgrncRBM在处理随机噪声数据时可以学习到更为\"干净\"的数据.在pgrncRBM中,与分类有关的数据与噪声都是使用RBM建模.如果噪声是图片,pgrncRBM就不能很好地去除噪声.Spike-and-Slab RBM(ssRBM)是一种处理实值数据的RBM变种模型,其定义两种不同类型的隐层用来学习实值数据的分布特性.因此,将ssRBM与pgRBM相结合,提出一种基于图像噪声数据与干净数据的Point-wise Gated受限玻尔兹曼机(pgRBM based on image noisy data and clean data,简称pgincRBM)方法.该方法使用ssRBM对噪声建模,其在处理图像噪声数据时可以学习到更为\"干净\"的数据.然后,通过堆叠pgrncRBM、pgincRBM和传统的RBM构建出深度网络模型,并探讨了权值不确定性方法在提出网络模型中的可行性.最后,在含噪声的手写数据集上进行MATLAB仿真实验.实验结果表明,pgrncRBM和pgincRBM都是有效的神经网络学习方法. 相似文献
7.
传统的心电信号分类方法通常需要人为提取特征,导致系统的分类性能不稳定.基于此,运用了基于深度置信网络的心电信号分类算法,利用网络的深层次学习能力自动学习信号的特征.提取特征后,选用Softmax分类器对信号进行分类,并用误差反向传播算法微调网络,提高分类性能.选取MIT-BIH数据库中的正常心拍、室性早搏、房性早搏和起... 相似文献
8.
人体行为识别和深度学习理论是智能视频分析领域的研究热点, 近年来得到了学术界及工程界的广泛重视, 是智能视频分析与理解、视频监控、人机交互等诸多领域的理论基础. 近年来, 被广泛关注的深度学习算法已经被成功运用于语音识别、图形识别等各个领域.深度学习理论在静态图像特征提取上取得了卓著成就, 并逐步推广至具有时间序列的视频行为识别研究中. 本文在回顾了基于时空兴趣点等传统行为识别方法的基础上, 对近年来提出的基于不同深度学习框架的人体行为识别新进展进行了逐一介绍和总结分析; 包括卷积神经网络(Convolution neural network, CNN)、独立子空间分析(Independent subspace analysis, ISA)、限制玻尔兹曼机(Restricted Boltzmann machine, RBM)以及递归神经网络(Recurrent neural network, RNN)及其在行为识别中的模型建立, 对模型性能、成果进展及各类方法的优缺点进行了分析和总结. 相似文献
9.
10.
常规的人体动作识别算法在单一特定的场景中效果较为突出,但在海洋钻井平台的实际工程场景中,易受管道遮挡和干扰,不能充分地利用视频的时序结构信息.针对这些问题,提出了一种复杂场景下基于时空双分支网络的人体动作识别框架.采用多规则区域提案标记算法将海水区域分离,将先验知识加入支持向量机分类器,提出后验判别准则以去除非人员目标... 相似文献
11.
受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variables)、Dropout方法和早期停止方法已被用于缓解过拟合问题.首先,改变RBM模型中的训练参数,使用随机变量代替传统的实值变量,构建了基于随机权值的受限的波尔兹曼机(weight uncertainty RBM,简称WRBM),接下来,在WRBM基础上构建了相应的深度模型:Weight uncertainty Deep Belief Network(WDBN)和Weight uncertainty Deep Boltzmann Machine(WDBM),并且通过实验验证了WDBN和WDBM的有效性.最后,为了更好地建模输入图像,引入基于条件高斯分布的RBM模型,构建了基于spike-and-slab RBM(ssRBM)的深度模型,并通过实验验证了模型的有效性. 相似文献
12.
针对在线视频热度预测研究中分类及预测效果欠佳,规则化较多和较缺乏实践检验等问题,通过对实际在线视频服务系统所采集的海量数据研究,提出一种基于深度信念网络(Deep Belief Networks,DBNs)的视频热度预测方法。首先,结合社交网络的关注度和视频关键词的搜索热度,对影响因子进行了建模和量化处理;其次,根据输入和输出变量确定了DBNs各层网络的结构,优化了网络参数和预测模型;最后,通过在线视频服务商的数据对深度信念网络进行训练,并多次交叉实验对比分析,结果表明基于DBNs方法在视频热度预测上准确率最高79.47%(国内视频)、65.33%(国外视频),可以为在线视频上映前的投资、宣传以及风险评估提供较全面可靠的参考决策。 相似文献
13.
提出了一种基于Gabor特征和深度信念网络(DBN)的人脸识别方法,通过提取Gabor人脸图像的不同尺度图进行卷积融合,将融合后的特征图作为DBN的输入数据,训练多层来获得更加抽象的特征表达,整个训练的过程中采用交差熵来微调DBN,模型的最顶层结合Softmax回归分类器对抽取后的特征进行分类.在AR人脸库测试的实验结果表明:将Gabor特征与DBN结合应用于人脸识别,其准确率可高达92.7%,与其他浅层学习模型相比,DBN学习了数据的高层特征的同时还降低了特征维数,提高了分类器的分类精度,最终有效改善了人脸识别率. 相似文献
14.
15.
提出了一种基于深度信念网络(DBN)的社保卡号码识别方法,通过采集社保卡图像,采用模块分割的方法,对社保卡号码区域进行行分割,利用区域生长的方法对行内号码分割,将号码图像灰度化与二值化,并归一化为32×32大小,作为深度信念网络的输入数据,训练3层受限玻尔兹曼机(RBM)来获得更加抽象的特征表达,模型的最顶层结合Softmax回归分类器对抽取后的特征进行分类.实验结果表明:其准确率高达98.3%,与BP神经网络和支持向量机(SVM)模型相比,深度信念网络学习了数据的高层特征的同时降低了特征维数,提高了分类器的分类精度,有效提高了社保卡号码识别率. 相似文献
16.
针对网络图像数据的迅速增多导致传统图像检索的效果不能满足当前需求的问题,提出了一种基于深度置信网络(deep belief network,DBN)和迭代量化(iterative quantization,ITQ)的无监督学习图像检索的方法.首先,构造深度置信网络的模型,此模型是由3层受限玻尔兹曼机堆叠而成;然后,用此深度置信网络模型对原始图像的高维特征进行中维特征提取,再采用迭代量化的哈希方法,对提取图像中维特征进行二值编码;最后,针对MNIST、CIFAR-10和Corel-1000数据集对模型进行实验验证并评估.结果表明,所提出的方法与现在的几种主流方法相比检索性能更好.除此之外,本方法对乳腺数据集DDSM和肺结节CT图像数据集LIDC-IDRI中的检索也取得了较好的效果. 相似文献