首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biodiesel as fatty acid alkylesters has become attractive because of its environmental benefits. A non‐edible oil as starting material for biodiesel production appears desirable and does not compromise the edible oils used mainly for food and feed. The present article discusses the enzymatic alcoholysis of crude Jatropha curcas oil in solvent free medium for the production of valuable fatty acid alkyl esters for use as biodiesel. Among various microbial lipases commonly tested in the literature, the highest initial rate (>18 μmol h–1 mg–1) with different alcohols was observed with immobilized lipase from Pseudomonas cepacia, but the activity depends on the amount of water. The best conversion (93%) to produce ethyl esters was achieved with lipase immobilized on the polypropylene carrier Accurel 1282 after 16 h at low enzyme concentration (3% w/w). Moreover, the transesterification could be conducted for at least 160 h during 10 batch runs without significant loss of activity. This reduces the costs for immobilized lipase and can thus make the enzymatic biodiesel production commercially more viable, especially starting from a non‐edible plant oil.  相似文献   

2.
Lipase-catalyzed synthesis of sugar fatty acid esters was performed in a heterogeneous reaction system in the presence of an organic solvent serving as adjuvant. Although the sugar is almost insoluble in such a system, high conversions to the corresponding sugar esters were achieved, due to crystallization of the product. Acylation occurred regioselectively at the primary hydroxyl group and subsequent diacylation was observed only in the case of caprylic acid (2–5%). Best conditions were found for solvents having low log P values and low product solubility such as acetone, using immobilized lipase from Candida antarctica (CAL-B, Novo SP435) and fatty acids with chain lengths from C12 to C8 as acyl donors. The esterification of β-D(+)-glucose with stearic acid resulted in up to 100% conversion after 48 hours equal to a productivity of 0.4 mmol sugar ester per gram lipase and hour.  相似文献   

3.
In the presence of an immobilized lipase fromCandida antacrtica (Novozym 435R) fatty acids are converted to peroxy acids by the reaction with hydrogen peroxide. In a similar reaction, fatty acid esters are perhydrolyzed to peroxy acids. Unsaturated fatty acid esters subsequently epoxidize themselves, and in this way epoxidized plant oils can be prepared with good yields (rapeseed oil 91%, sunflower oil 88%, linseed oil 80%). The hydrolysis of the plant oil to mono- and diglycerides can be suppressed by the addition of a small amount of free fatty acids. Rapeseed oil methyl ester can also be epoxidized; the conversion of C=C-bonds is 95%, and the composition of the epoxy fatty acid methyl esters corresponds to the composition of the unsaturated methyl esters in the substrate. Based partly on a lecture at the 86th AOCS Annual Meeting & Expo, San Antonio, Texas, May 7–11, 1995.  相似文献   

4.
Synthesis of a fatty acid ethyl ester via the lipase‐catalyzed transesterification of acid oil and ethanol was investigated in a continuous reactor. Lipozyme TL IM was employed as the immobilized lipase. This immobilized lipase derived from Thermomyces lanuginosus was purchased from Novozymes (Seoul, Korea). The acid oil was prepared by the acidification of soapstock formed as a by‐product during the refining of rice bran oil. The parameters investigated were water content, temperature, and molar ratio of substrates. The relative activity of Lipozyme TL IM was assessed during the repeated use of the immobilized lipase. The water content of the substrate had a considerable effect on the yield and the optimum water content was 4 %. The optimum temperature and molar ratio of acid oil to ethanol were 20 °C and 1:4, respectively. The maximum yield of approximately 92 % was achieved under the optimum conditions. The corresponding compositions were 92 % fatty acid ethyl esters, 3 % fatty acids, and 5 % acylglycerols. When glycerol formed during the reaction was removed by intermittent washing with ethanol, the relative activity of lipase was maintained over 82 % for a total usage of 27 cycles. For a mean residence time of 4 h, the half‐life times of Lipozyme TL IM on the control (unwashed) and treatment (washed) were 39 and 45 cycles, respectively.  相似文献   

5.
Heterogeneous biocatalysts prepared by immobilizing a recombinant lipase from Thermomyces lanuginosus on mesoporous inorganic supports—silica (SiO2), alumina (Al2O3), and titania (TiO2)—are comparatively studied in the esterification of fatty acids with aliphatic alcohols. It is found that the T. lanuginosus lipase adsorbed on silica has the highest esterifying activity, while the lipase adsorbed on titania is completely inactivated. SiO2-based catalysts have high activity and stability in the esterification of saturated fatty acids containing 4–18 carbon atoms (C4–C18) with aliphatic alcohols (C5–C16) in organic solvents (hexane and diethyl ether). The catalysts operate in this reaction for several tens of reaction cycles (>40) without loss of activity. The recombinant rPichia/lip lipase immobilized on silica exhibits the most pronounced specificity for its first substrate, a fatty acid. For instance, the rate of synthesis for esters of low molecular weight acids (С4–С6) is three to four times slower than for the esters of acids with more than seven carbon atoms. The catalyst has a relatively broad specificity for the second substrate, an aliphatic alcohol. It is found that the ester of enanthic acid (C7:0) and butanol (C4) is synthesized at the maximum rate.  相似文献   

6.
An alkaline thermotolerant bacterial lipase of Bacillus coagulans MTCC‐6375 was purified and immobilized on a methacrylic acid and dodecyl methacrylate (MAc‐DMA) hydrogel. The lipase was optimally bound to the matrix after 20 min of incubation at 55°C and pH 9 under shaking conditions. The matrix‐bound lipase retained approximately 50% of its initial activity at 70–80°C after 3 h of incubation. The immobilized lipase was highly active on medium chain length p‐nitrophenyl acyl ester (C: 8, p‐nitrophenyl caprylate) than other p‐nitrophenyl acyl esters. The presence of Fe3+, NH4+, K+, and Zn2+ ions at 1 mM concentration in the reaction mixture resulted in a profound increase in the activity of immobilized lipase. Most of the detergents partially reduced the activity of the immobilized lipase. The immobilized lipase performed ~62% conversion in 12 h at temperature 55°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1420–1426, 2006  相似文献   

7.
Lipase catalyzed formation of fatty amides   总被引:2,自引:0,他引:2  
Certain lipase preparations were found to facilitate the preparation of fatty amides at 20°C in hexane. Lipase preparations investigated were from the fungiCandida rugosa, Rhizomucor miehei and porcine pancreas. Reactants were various primary alkylamines and fatty acid methyl esters or triglycerides. Moderate yields of fatty amides were obtained using aR. miehei lipase preparation which is immobilized on a solid support as catalyst, although all three lipase preparations showed some catalytic activity under these conditions and, in addition, showed different kinds of selectivity for fatty acid and alkylamine chain lengths. No reaction was observed in similar experiments using one fatty acid as the substrate or one secondary amine.  相似文献   

8.
The esterification of some natural antioxidants such as cinnamic acid derivatives and ascorbic acid in non-aqueous media, catalyzed by immobilized lipases from Candida antarctica and Rhizomucor miehei, was investigated. The alcohol chain length affected the rate of esterification of cinnamic acids by both lipases. Higher reaction rates were observed when the esterification was carried out with medium- or long-chain alcohols. The rate also depended on aromatic acid structure. The reactivity of the carboxylic function of the cinnamic acids was affected by electron-donating substituents in the aromatic ring. Higher yields were observed for the esterification of p-hydroxyphenylacetic acid (97%) catalyzed by C. antarctica lipase and for the esterification of cinnamic acid (59%) catalyzed by R. miehei lipase. Candida antarctica lipase was more suitable for producing ascorbic acid fatty esters, catalyzing with a relatively high yield (up to 65% within 24 h) the regioselective esterification of ascorbic acid with various fatty acids in 2-methyl-2-propanol. The reaction rate and yield depended on the fatty acid chain length and on the molar ratio of reactants. All ascorbic acid fatty esters produced by this procedure exhibited a significant antioxidant activity in a micellar substrate composed of linoleic acid.  相似文献   

9.
Candida sp. 99-125脂肪酶及其在化学品合成中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
谭天伟  陈必强 《化工学报》2010,61(7):1685-1692
传统的酯化或转酯化产品的合成通常需要高温、强酸、强碱等相对苛刻的条件,脂肪酶由于其生物催化过程具有高效、高选择性、条件温和和环境友好等特点,在化学品的合成中越来越受到人们的关注。本课题组开发了一种可以用于酯类合成的新脂肪酶,并且实现了该酶的工业化生产。来源于Candida sp. 99-125的脂肪酶在非水相中对酯化和转酯化反应具有高效的催化活性和稳定性。本文介绍了该脂肪酶的发酵生产及其在中长链脂肪酸酯、二元酸酯、维生素A棕榈酸酯、手性化合物以及生物柴油等多种化学品的合成中的应用。  相似文献   

10.
The lipase-catalyzed synthesis of alkyl esters from tallow and grease using Pseudomonas cepacia lipase (PS-30) immobilized within a phyllosilicate sol-gel matrix was investigated. The effects of the presence of alcohol and of the amount of enzyme used were studied. The matrix-immobilized PS-30 lipase effectively converted grease and tallow to ethyl esters in greater than 95% yield when using ethanol. The final conversion of grease or tallow to alkyl esters was aided by the addition of molecular sieves (0.4 wt% of substrates) to the reaction mixture. The matrix-immobilized PS-30 enzyme was easily recovered and could be reused at least five times without losing its activity. Accordingly, the phyllosilicate sol-gel immobilized PS-30 lipase is potentially useful for the economic production of biodiesel fuel.  相似文献   

11.
BACKGROUND: Enzymatic esterification of phytosterols with fatty acids from butterfat in equimolecular conditions to produce phytosteryl esters was performed in solvent‐free medium. Commercial and immobilized Candida rugosa lipases were used as biocatalysts for the reaction. RESULTS: By this methodology, under simple and mild reaction conditions (without solvents, 50 °C and short reaction times), 94% and 99% (w/w) of phystosteroyl esters were obtained in 48 h and 9 h with the commercial and the immobilized lipase, respectively. The effects of temperature, fatty acid specificity, enzyme amount and residual activity of each lipase were also evaluated. CONCLUSIONS: The phytosteryl esters from butterfat produced in this study are expected to have lower melting point, improved oil and fat solubility and bioavailability compared to that of their corresponding free phytosterols. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Fatty acid alkyl esters were produced from various vegetable oils by transesterification with different alcohols using immobilized lipases. Using n‐hexane as organic solvent, all immobilized lipases tested were found to be active during methanolysis. Highest conversion (97%) was observed with Thermomyces lanuginosa lipase after 24 h. In contrast, this lipase was almost inactive in a solvent‐free reaction medium using methanol or 2‐propanol as alcohol substrates. This could be overcome by a three‐step addition of methanol, which works efficiently for a range of vegetable oils (e.g. cottonseed, peanut, sunflower, palm olein, coconut and palm kernel) using immobilized lipases from Pseudomonas fluorescens (AK lipase) and Rhizomucor miehei (RM lipase). Repeated batch reactions showed that Rhizomucor miehei lipase was very stable over 120 h. AK and RM lipases also showed acceptable conversion levels for cottonseed oil with ethanol, 1‐propanol, 1‐butanol and isobutanol (50‐65% conversion after 24 h) in solvent‐free conditions. Methyl and isopropyl fatty acid esters obtained by enzymatic alcoholysis of natural vegetable oils can find application in biodiesel fuels and cosmetics industry, respectively.  相似文献   

13.
Esters of l-ascorbic acid with long-chain fatty acids (E-304) are employed as antioxidants in foods rich in lipids. Although their enzymatic synthesis offers some advantages compared with the current chemical processes, most of the reported methods employ the immobilized lipase from Candida antarctica as biocatalyst and free fatty acids or activated esters as acyl donors. In order to diminish the cost of the process, we have investigated the synthesis of ascorbyl oleate and ascorbyl palmitate esters with the immobilized Thermomyces lanuginosus lipase Lipozyme TL IM—which is significantly less expensive than Novozym 435—and triglycerides as source of fatty acids. Lipozyme TL IM gave rise to a lower yield of 6-O-ascorbyl oleate than Novozym 435 when using triolein (64 vs. 84%) and olive oil (27 vs. 33%) as acyl donors. Both 6-O-ascorbyl oleate and 6-O-ascorbyl palmitate displayed excellent surfactant and antioxidant properties. The Trolox Equivalent Antioxidant Capability values for the oleate and palmitate were 71 and 84%, respectively, of those obtained with l-ascorbic acid; however, both derivatives were able to stabilize soybean oil towards peroxide formation.  相似文献   

14.
Tsujita T  Sumiyoshi M  Okuda H 《Lipids》1999,34(11):1159-1166
The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, was ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium.  相似文献   

15.
BACKGROUND: Reactions performed under solvent‐free conditions give processes that are environmentally friendly, since most solvents are polluting agents. In this work, the performance of Candida rugosa lipae (CRL) immobilized on styrene‐divinylbenzene (STY‐DVB) or controlled pore silica (CPS), and the commercial lipase Novozym 435, was evaluated for the synthesis of butyl esters in solvent–free systems (SFS). A 22 full factorial design was used to study the influence of the organic acid chain length and the biocatalyst concentration on the esterification performance. RESULTS: When CRL on STY‐DVB was used, the ester formation was influenced by both variables and their interaction. The reaction conversion was higher (63%) using 10% of immobilized system and lauric acid, corresponding to a productivity of 3.62 g L?1 h?1 For CRL on CPS, only the effect of biocatalyst concentration was significant, and the highest yield was attained using 20% of immobilized system and caprilic acid. In the case of Novozym 435, the highest yield (49%) was obtained using butyric acid as acyl donor at 15% of immobilized lipase. CONCLUSION: The results allowed better understanding of the influence of important parameters in this environmentally friendly process, which also has the process advantage of a higher volumetric productivity when compared with a solvent system. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Candida rugosa lipase was immobilized on poly(N‐methylolacrylamide) by physical adsorption. The biocatalyst performance (immobilized lipase) was evaluated in both aqueous (hydrolysis) and organic (butyl butyrate synthesis) media. In the first case, a comparative study between free and immobilized derivatives was provided in terms of pH, temperature and thermal stability following the olive oil hydrolysis, establishing new optimum values. In the second case, the influence of temperature, biocatalyst concentration and acid/alcohol molar ratio was simultaneously studied according to a 23 full experimental design. The highest molar conversion (96 %), volumetric productivity (1.73 g L–1 h–1) and specific esterification activity (1.00 μM mg–1 min–1) were obtained when working at the lowest level of temperature and butyric acid in excess. Under these conditions, repeated batch use of the immobilized enzyme was performed and half‐life time (t1/2) was found to be 145 h.  相似文献   

17.
Hydroxy fatty acid (HFA) esters of long-chain alcohols, such as hydroxy stearates, have potential applications from lubricants to cosmetics. These esters were synthesized enzymatically to overcome the problems associated with chemical processes. An immobilized lipase, Rhizomucor miehei, was employed as catalyst in the esterification reaction between hydroxy-stearic acid as a source of HFA and monohydric fatty alcohols (C8–C18). The yields of esters were in the range of 82–90% by conducting the reactions at 65±2°C, 2–5 mm Hg pressure, and 10% lipase concentration. The products were analyzed by infrared spectroscopy, and some of their analytical characteristics were determined.  相似文献   

18.
Oxidative stability of lipids is one of the most important parameters affecting their quality. Lipase‐catalyzed lipophilic tyrosyl esters with an equivalent carbon alkyl chain but different degrees of unsaturation (C18:0 to C18:4n3) were prepared, characterized, and used as antioxidants. Free fatty acids and fatty acid ethyl esters (substrate molar ratio tyrosol: acyl donor, 1:10) were used as acyl donors and immobilized lipase from Candida antarctica was the biocatalyst (10 %). The phenolipids were isolated and characterized using ESI–MS, 1H‐NMR, and 13C‐NMR. Peroxide value (PV) and para‐anisidine value (p‐AV) were measured to evaluate their antioxidant activities in bulk oil structured lipid (SL) and in an oil‐in‐water emulsion (SL‐based infant formula). No significant difference was found in yield and reaction time between the two types of acyl donors. However, as the unsaturation of the fatty acids increased the reaction time also increased. In SL, tyrosyl esters exhibited lower antioxidant activity than tyrosol whereas the addition of an alkyl chain enhanced the antioxidant efficiency of tyrosol in infant formula. Tyrosyl oleate was the most efficient antioxidant in the emulsion system followed by tyrosyl stearate and tyrosyl linoleate. These results suggest that the synthesized phenolipids may be used as potential antioxidants in lipid‐based products.  相似文献   

19.
Two immobilized lipases fromCandida antarctica (SP 382) andC. cylindraceae, nowrugosa (2001), catalyzed the synthesis of novel acetylated glucose fatty acid esters with glucose pentaacetate (GP) and Trisun 80 (80% oleic) vegetable oil or methyl oleate as substrates in organic solvents. The relative yield was between 6.4–52%, and the incorporation of oleic acid onto the glucose was between 31–100%. In addition, these enzymes were able to catalyze the synthesis of glucose fatty acid esters with free glucose as the sugar substrate. The highest oleic acid incorporation (100%) was obtained in benzene with SP 382 lipase and Trisun 80 as the acyl donor. With methyl oleate as the acyl donor, greater incorporation was obtained in benzene (90.5%) compared to 75% in isooctane. The 2001 lipase was better in benzene/pyridine (2∶1 vol/vol) 74%) and chloroform (61%) compared to benzene and isooctane. However, with free glucose and Trisun 80 as substrates, both enzymes gave acceptable levels of oleic acid incorporation (82–100%) in benzene, benzene/pyridine and pyridine. The best conditions for the ester interchange reaction reported are: lipase (10% by weight of substrate); incubation time 48 h; molar ratio of Trisun/GP 1∶2; 3 mL solvent and 3% added water. These glucose esters have potential applications as emulsifiers in food, cosmetics and pharmaceutical formulations.  相似文献   

20.
The effects of free fatty acids and fatty acyl esters of coenzyme A and carnitine on the activity of a hormone-sensitive lipase preparation made from pigeon adipose tissue were determined. Oleic acid (100 μM) resulted in a 40% inhibition of lipase activity A more potent inhibition of lipase activity was seen with long-chain fatty acyl CoA compounds. The concentration required for half-maximal inhibition with oleoyl CoA and palmitoyl CoA was 25–40 μM, whereas palmitoyl carnitine stimulated lipase activity. Activated lipase preparations (preincubated with Mg2+, ATP, cyclic AMP and protein kinase) were 4–6 times more sensitive to inhibition by oleoyl CoA than were nonactivated preparations. An increase in cellular levels of fatty acyl coenzyme A could, therefore, contribute to the feedback inhibition of lipolysis in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号