首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

2.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

3.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

4.
A multieffect refrigeration system that is based on a waste‐heat‐driven organic Rankine cycle that could produce refrigeration output of different magnitudes at different levels of temperature is presented. The proposed system is integration of combined ejector–absorption refrigeration cycle and ejector expansion Joule–Thomson (EJT) cooling cycle that can meet the requirements of air‐conditioning, refrigeration, and cryogenic cooling simultaneously at the expense of industrial waste heat. The variation of the parameters that affect the system performance such as industrial waste heat temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ejector refrigeration cycle (ERC) and EJT cycles was examined, respectively. It was found that refrigeration output and thermal efficiency of the multieffect cycle decrease considerably with the increase in industrial waste heat temperature, while its exergy efficiency varies marginally. A thermal efficiency value of 22.5% and exergy efficiency value of 8.6% were obtained at an industrial waste heat temperature of 210°C, a turbine inlet pressure of 1.3 MPa, and ejector evaporator temperature of 268 K. Both refrigeration output and thermal efficiency increase with the increase in turbine inlet pressure and ERC evaporator temperature. Change in EJT cycle evaporator temperature shows a little impact on both thermal and exergy efficiency values of the multieffect cycle. Analysis of the results clearly shows that the proposed cycle has an effective potential for cooling production through exploitation of lost energy from the industry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13 kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.  相似文献   

6.
7.
蓄热水箱作为太阳能供暖系统的重要核心设备,其性能直接影响着储能系统的整体运行效率。设计一种基于圆柱形相变单元的相变储热装置,并搭建相变蓄热水箱性能测试平台,通过单一控制变量法得到储热装置放热过程的温度变化曲线。研究表明:对于空间一定的储热装置,在等质量相变材料(PCM)时,相变单元的直径对装置放热速率的影响较大;相变单元之间的间距对装置放热速率的影响较小;当增大换热流体(HTF)的入口流量及降低HTF入口温度时,能大大减少储热装置的放热时间,提高储热装置的整体性能。  相似文献   

8.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

9.
This article describes an experimental investigation to measure performances of a vapor absorption refrigeration system of 1 ton of refrigeration capacity employing tetrafluoro ethane (R134a)/dimethyl formamide (DMF). Plate heat exchangers are used as system components for evaporator, condenser, absorber, generator, and solution heat exchanger. The bubble absorption principle is employed in the absorber. Hot water is used as a heat source to supply heat to the generator. Effects of operating parameters such as generator, condenser, and evaporator temperatures on system performance are investigated. System performance was compared with theoretically simulated performance. It was found that circulation ratio is lower at high generator and evaporator temperatures, whereas it is higher at higher condenser temperatures. The coefficient of performance is higher at high generator and evaporator temperatures, whereas it is lower at higher condenser temperatures. Experimental results indicate that with addition of a rectifier as well as improvement of vapor separation in the generator storage tank, the R134a/DMF-based vapor absorption refrigeration system with plate heat exchangers could be very competitive for applications ranging from –10°C to 10°C, with heat source temperature in the range of 80°C to 90°C and with cooling water as coolant for the absorber and condenser in a temperature range of 20°C to 35°C.  相似文献   

10.
The use of a heat exchanger using phase change material (PCM) is an example of latent heat thermal energy storage (LHTES). In this study, the charging of PCM (RT50) is studied in a double pipe heat exchanger. The designing of the heat exchanger needs to be optimized for operating and boundary conditions to store latent heat efficiently. The size of the equipment and the amount of PCM are also important to calculate the latent heat storage capacity of the LHTES device. In this study, the amount of PCM taken is quite high to avoid sensible heat transfer and to maximize the heat content of PCM. The charging process of PCM is numerically simulated using an enthalpy-porosity model. The study includes the effect of inlet temperature and flow rate of high-temperature-fluid (HTF) and concludes that both play an important role in determining the charging time. The continuous increase in inlet temperature of HTF can decrease the charging time of PCM in the heat exchanger. However, the continuous increase in the HTF flow rate cannot show the same effect. The charging time can only be minimized with a specified flow rate regime for a specific inlet temperature of HTF. These factors consequently affect the efficiency of the heat exchanger.  相似文献   

11.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
A computational fluid dynamic (CFD) model for tubes in a phase change thermal energy storage system has been developed and validated with experimental results. The heat transfer fluid (HTF) flows in tubes which are configured in a unique arrangement during the charging and discharging processes. Water was used as the phase change material (PCM) which was contained in a cylindrical tank with four tubes coiled inside it. Experiments were conducted for both freezing and melting processes. A three-dimensional CFD model using Ansys code was developed and validated with experimental results. This model endeavoured to describe both the freezing and melting processes of the PCM. The inlet and outlet HTF temperatures as well as nine temperature locations in the PCM were compared with the CFD results. The average effectiveness as well as the duration of the phase change process of each experimental point was also compared with results from the CFD. From this study, it was concluded that the CFD model developed can accurately predict the behaviour of the thermal storage system during charging and discharging. The paper gives details of the CFD model and compares results from the model and experiments.  相似文献   

13.
Micro‐phase change materials (micro‐PCMs) are proposed to increase the thermal conductivity and the thermal energy storage capacity of a heat transfer fluid (HTF). In this work, we have selected dimethyl terephthalate (DMT) to be used as a PCM for performance enhancement of a synthetic oil in the temperature range of approximately 100 to 170 °C. Silicon dioxide (SiO2) was used as the microencapsulant, because of its desirable properties as containment material, including thermal stability. The SiO2‐coated DMT micro‐PCM was characterized to determine relevant properties and its suitability for HTF performance enhancement. The SiO2‐coated DMT was found to completely disperse in the synthetic oil, Therminol SP, silicone oil, at and above 100 °C. FTIR, thermal diffusivity and differential scanning calorimetry measurements were carried out on the materials, and these tests demonstrated that the coated particles can be used for HTF enhancement in the temperature range of 100–170 °C and potentially higher temperatures if pressurized pipes/vessels are utilized. Using the measured thermal diffusivity and known data for density and specific heat capacity, the thermal conductivity of the micro‐PCM was calculated. Our calculations indicate that both the thermal conductivity and the thermal energy storage heat capacity of the HTF would be enhanced by the addition of this micro‐PCM. It is expected that the thermal conductivity increase will enhance the heat transfer of the fluid when in use at temperatures above and below the melting temperature of the PCM. At the melting point, the latent heat of the PCM will increase the thermal energy storage capacity of the fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Thermal energy storage (TES) using phase change materials (PCMs) has recently received considerable attention in the literature, due to its high storage capacity and isothermal behaviour during the storage (melting or charging) and removal (discharging or solidification). In this study, a novel modification on a tube-in-shell-type storage geometry is suggested. In the proposed geometry, the outer surface of the shell is inclined and it is the objective of this study to determine the optimum range for the inclination angle of the shell surface. Paraffin with a melting temperature of 58.06°C, which is supplied by the Merck Company, is used as the PCM. The PCM is stored in the vertical annular space between an inner tube through which the heat transfer fluid (HTF), hot water, is flowing and a concentrically placed outer shell. At first, the thermophysical properties of this paraffin are determined through the differential scanning calorimeter (DSC) analysis. Temporal behaviour of the PCM undergoing a non-isothermal solid–liquid phase change during its melting or charging by the HTF are determined for different values of the inlet temperature and the mass flow rate of the HTF. The new geometry is shown to respond well with the melting characteristics of the PCM and to enhance heat transfer inside the PCM for a specific range of the shell inclination angle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Mehmet Esen   《Solar Energy》2000,69(1):47
In this study, the cylindrical phase change storage tank linked to a solar powered heat pump system is investigated experimentally and theoretically. A simulation model defining the transient behaviour of the phase change unit was used. In the tank, the phase change material (PCM) is inside cylindrical tubes and the heat transfer fluid (HTF) flows parallel to it. The heat transfer problem of the model (treated as two-dimensional) was solved numerically by an enthalpy-based finite differences method and validated against experimental data. The experiments were performed from November to May in the heating seasons of 1992–1993 and 1993–1994 to measure both the mean temperature of water within the tank and the inlet and outlet water temperature of the tank. The experimentally obtained inlet water temperatures are also taken as inlet water temperature of the simulated model. Thus, theoretical temperature and stored heat energy distribution within the tank have been determined. Solar radiation and space heating loads for the heating seasons mentioned above are also presented.  相似文献   

16.

Thermal energy storage performance of fatty acids and a eutectic mixture as phase change materials (PCMs) has been investigated experimentally. The selected PCMs for this study were palmitic acid, myristic acid, stearic acid, and a mixture of stearic and myristic acids in eutectic combination ratio of 65.7 wt% myristic acid and 34.3 wt% stearic acid. The PCMs have a melting temperature range of 50.0°C to 61.20°C and a latent heat range of 162.0 J/g to 204.5 J/g. The inlet temperature and the mass flow rate of heat transfer fluid (HTF) were selected as experimental parameters to test the thermal energy storage performance of the PCMs. The transition times, temperature range, propagation of the solid-liquid interface, as well as heat flow rate characteristics of the employed cylindrical tube storage system were studied at varied experimental parameters. The experimental results show that the melting front moves to inward in the radial directions as well as in the axial directions from the top toward to the bottom of the PCM tube. It was observed that the convection heat transfer in the liquid phase plays an important role in the melting process. The changes in the studied HTF parameters have more effect on the melting processes than the solidification processes of the PCMs. The average heat storage efficiency calculated from data for all the PCMs is 51.5%, meaning that 48.5% of the heat actually was lost somewhere.  相似文献   

17.
This study examines the energy discharge of a phase-changing material (PCM)-based air heat exchanger using a metal foam inside the heat transfer fluid (HTF) channel. Such systems have various potential applications in the heating space and building ecosystem. Thermal energy storage (TES) often utilizes air as the HTF, which limits the heat transfer performance due to the low thermal conductivity. This paper aims to address this drawback via incorporating a metal foam into the HTF channel to enhance the thermal performance between the heat transfer fluid (air) and the PCM, which is considered as the novel side of this study. The combined system is mathematically modeled with an symmetrical, three-dimensional computational fluid dynamics method for various flow rates and inlet temperatures of the HTF with different geometric parameters of the metal foam. This study indicates the advantage of utilizing the porous medium in the air channel. The results show the HTF flow rate has a great influence on the discharging rate. The presence of the porous medium in the system improves the discharging process by 116% compared with a non-porous medium system at the same flow rate. The discharging time decreases by increasing the porosity, and the value of 90% is found as the best porosity value at the flow rate of 0.005 kg/s in this system. The solidification rate is proportional to the pore density because of the surface area impacts of the porous medium, also the pressure-drop and the pumping required are highly affected by the mentioned dependent parameters.  相似文献   

18.
The cylindrical latent heat storage tanks considered here are part of a domestic heating system. In this study, the performances of such energy storage tanks are optimized theoretically. Two different models describing the diurnal transient behaviour of the phase change unit were used. The first is suited to tanks where the phase change material (PCM) is packed in cylinders and the heat transfer fluid (HTF) flows parallel to it (mode 1). The second is suited to tanks where pipes containing the fluid are embedded in the PCM (mode 2). The problem (treated as two-dimensional) is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. A series of numerical tests are then undertaken to assess the effects of various PCMs, cylinder radii, pipe radii, total PCM volume in the tank, mass flow rates of fluid, and inlet temperatures of the HTF on the storing time. In addition, optimal geometric design of the store depending on these parameters and PCMs is presented.  相似文献   

19.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120  相似文献   

20.
徐阳  岳晨  高鹏举 《太阳能学报》2022,43(12):531-539
针对给定太阳日辐射曲线,研究集成蓄热单元的太阳光热系统的整体能量的动态转化特性及关键参数影响规律。结果表明:填料床总储热量与传热流体进口流速呈非线性变化,当传热流体进口流速 uf =0.006 m/s时,填料床总储热量最大;在给定填料总容量和uf =0.006 m/s的条件下,填料床高径比为5的填料床具有更高的储热能力;在该计算条件下,uf =0.006 m/s、填料床高径比为5及填料量相对值为1时,太阳光热能实现最大程度上的转化和储存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号