首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影响因素的相关性,提出一种行业聚类方法,该方法根据不同行业的数据特征对相似的行业进行聚类,并根据聚类结果训练长短期记忆网络模型。文中模型能够学习售电量数据以及相关影响因素的数据特征和内在关联关系。实验结果表明,文中所提出的预测模型比经典的预测模型具有更高的准确度。  相似文献   

2.
采用长短期记忆深度学习模型的工业负荷短期预测方法   总被引:1,自引:0,他引:1  
工业负荷不同于其他电力负荷, 受气温、时间、人口等外部因素的影响较小, 其功率需求主要由相关企业的生产计划来决定。在电力市场环境下, 准确的负荷预测有助于工业用户更好地制定电力交易策略, 从而增加收益。在此背景下, 基于改进的长短期记忆(long short term memory, LSTM)深度学习网络模型, 提出了一种工业负荷短期预测算法。首先,在网络层次上构建层数更多即网络层次更深的LSTM深度学习负荷预测模型。接着, 在每个LSTM单元构成的隐含层中, 采用Dropout技术对神经元进行随机概率失活, 并通过正则化有效避免深度学习过拟合问题并改善了模型性能。然后, 采用真实的工业用户历史负荷数据对所提算法进行测试, 并与已有的短期负荷预测算法进行对比, 包括自回归滑动平均模型 (auto-regressive and moving average model, ARMA), 最邻近回归算法 (K nearest neighbor regression, KNN) 以及支持向量回归算法 (support vector regression, SVR)。仿真结果表明, 所提深度学习工业负荷短期预测算法相比于一些现有方法, 其预测准确度有明显提升,预测结果的平均绝对百分误差(mean absolute percentage error, MAPE)在9%以下。  相似文献   

3.
随着电力系统规模不断增大,电力系统量测数据呈现快速增长趋势。然而海量数据的采集、测量、传输和存储等过程均可能出现数据缺失问题,从而威胁电网安全。针对电力系统量测缺失数据问题,文章提出了一种基于长短期记忆(long short-term memory,LSTM)网络的缺失数据恢复方法。首先,基于LSTM网络具有提取电力系统量测数据时序规律的特性,提出一种双层全连接LSTM网络模型,利用已知数据建立对缺失数据的映射。其次,为提高系统不同数据状态下的恢复精度,提出了一种随机森林状态辨识方法和考虑缺失数据位置的恢复策略。最后,利用仿真数据和实测数据验证该方法的有效性和准确性,结果表明该方法无需系统拓扑参数即可显著提高电力系统量测数据质量。  相似文献   

4.
为提高风速的预测性能,提出了多通道长短期记忆网络和卷积网络相结合的风速预测方法。预测模型由多个长短期记忆子网络及卷积网络组成。各子网络选择不同长度的历史数据作为输入,分别实现未来风速值的计算,避免了单一网络输入数据长度参数难以确定的问题。卷积网络将各子网络的计算结果进行卷积、最大池化操作,并通过全连接层计算风速序列的预测值。为避免预测误差累积及漂移,利用误差动态补偿方法对预测值进行校正,获得最终的预测结果。多通道长短期记忆卷积网络可用于风速的超短期预测中,仿真实验结果表明,与现有基于深度学习的预测网络相比,该网络能够更好地拟合实际风速序列的变化趋势,表现出更优的预测性能。  相似文献   

5.
金亮  冯裕霖  曹佳豪  王艳阳 《电气技术》2021,22(7):65-71,77
由于需要考虑换能效率、噪声、体积和质量等因素,电力变压器的设计参数和性能数据往往十分复杂,因此,如何建立变压器代理模型是亟需解决的问题.采用代理模型的优化算法(SBO)能有效解决数值模拟直接优化耗时长的问题.本文用深度学习建立变压器设计参数和性能数据的代理模型,实现变压器性能优化目标的高精度预测,有效降低变压器性能分析...  相似文献   

6.
高比例新能源与高比例电力电子设备引发的宽频振荡问题日益凸显,而现有基于同步相量数据的振荡监测方法受到现有通信带宽的限制,难以对频率在数赫兹至数百赫兹范围内的宽频振荡进行全局化监测。为此,提出一种基于自编码器信号压缩与长短期记忆(LSTM)网络的宽频振荡广域定位方法。该方法利用自编码器的数据压缩与解码还原能力实现宽频振荡信号的广域监测分析。首先,在子站对电力系统量测信号进行编码压缩,在现有带宽下实现宽频振荡信号的传输,并有效降低振荡数据的冗余度。然后,在主站侧,可直接基于压缩数据生成特征矩阵,利用LSTM网络定位振荡源。此外,主站还能解码子站上传的压缩数据,并根据需求利用压缩数据或解码还原数据,从而进行宽频振荡的分析与控制。最后,全面考虑次同步、超同步以及中高频段的宽频振荡,并计及负荷变动和随机噪声进行仿真,所得结果表明该方法具有较高的还原与定位精度以及较好的抗噪性能。  相似文献   

7.
伴随着中国国家能源革命战略与电力体制改革的发展,综合能源系统作为综合各能源属性的新型能源发展形态逐步兴起,最大限度提升了能源利用效率.然而,综合能源系统存在量测数据冗余度低、量测设备的量测误差较大以及电网与气网量测设备的数据采集单位时间标尺不统一的问题,对电-气耦合的综合能源系统状态估计问题提出严峻挑战.考虑到数据驱动方法具有高度的可移植性与对不同信息提炼归纳的能力,建立了一种基于长短期记忆的电-气耦合综合能源系统贝叶斯状态估计模型.采用贝叶斯学习获取量测量的概率统计特征,利用蒙特卡洛采样生成完备量测数据,通过电-气耦合综合能源系统潮流检验所生成数据的合理性,从而得到长短期记忆深度学习网络的训练样本集合.采用均方根误差的评判标准对长短期记忆深度学习网络进行训练,有效提升了电-气耦合综合能源系统状态估计的精度.与经典模型驱动的状态估计方法比较,算例仿真验证了所提数据驱动状态估计方法的有效性与鲁棒性.  相似文献   

8.
为了提高电能质量扰动分类准确率,针对扰动信号时序性的特点,采用了基于卷积-长短期记忆网络的电能质量扰动分类方法。首先,将扰动信号进行采样作为输入。然后,通过卷积神经网络(CNN)提取特征数据,再对提取到的特征数据以序列的形式作为长短期记忆网络(LSTM)的输入,对特征数据进行筛选更新。最后,再对输出的特征数据进行学习分类。仿真结果显示,该方法对电能质量扰动信号的平均分类准确率为99.6%,优于单一的CNN法和单一的LSTM法。  相似文献   

9.
为了在发生故障后维持电力系统的安全稳定,有必要实现对故障区域的快速定位并确定故障冲击的传播路径,提出基于长短期记忆网络(LSTM)的故障区域定位和故障传播路径推理方法.首先,利用LSTM建立2个故障诊断模型分别实现在线检测故障时刻和确定故障区域;然后,通过计算故障点附近线路的端口供给能量确定故障冲击的传播路径;最后,以...  相似文献   

10.
为解决失效数据样本量过小对继电保护装置可靠性评估产生的精度影响, 提出了一种基于长短期记忆(LSTM)网络的小样本故障率数据下的继电保护装置可靠性评估方法.该方法采用装置运行时间构建多维输入变量,预测平均故障率,并由扩充的故障率数据进行故障率模型的参数估计,最后得到装置的可靠使用寿命,并作为继电保护装置建议退出运行时间.算例分析表明该方法对小数据样本进行了有效的扩充,实现了快速精确的寿命估计.  相似文献   

11.
为进一步提升电力系统暂态稳定评估的准确率,依据电力系统暂态过程数据的时序特性,建立了一种基于双向长短期记忆(Bi-LSTM)网络的暂态稳定评估模型。该方法通过Bi-LSTM网络建立底层量测数据与电力系统暂态稳定类别之间的非线性映射关系,采用准确率、F1指标和FPR指标综合评估Bi-LSTM网络模型性能的优劣,在此基础上,采用t分布随机近邻嵌入(t-SNE)降维方法和k最近邻(KNN)分类器进一步提升暂态稳定评估的准确率。新英格兰10机39节点系统算例表明:所提模型比传统的机器学习模型和部分深度学习模型拥有更好的评估性能。通过可视化方法和网络预测分数对评估模型进行分析,结果表明Bi-LSTM网络模型具有较强的电力系统暂态过程特征提取能力,适用于电力系统暂态稳定性的评估。进一步研究了底层输入数据的归一化模式和方法对暂态评估模型的影响,结果表明z-score归一化方法要优于min-max归一化方法,采用总维数归一化模式的模型评估性能更好。  相似文献   

12.
电力系统负荷聚类和特性分析对电网的安全与经济调度、运行具有重要意义,是提升调度人员对电网感知能力的重要技术手段。为了解决传统负荷聚类方法需要人工设定负荷特征指标和无法考虑负荷时序特性等问题,提出了一种由长短期记忆(LSTM)自动编码器构成的负荷聚类方法。利用LSTM的时序记忆能力和自动编码器的非线性特征提取能力,实现了考虑负荷时序特性的自动特征提取和非线性降维。然后,基于提取的负荷特征采用k-means聚类算法进行电力负荷聚类分析。最后,采用实际供电区域的负荷数据进行验证,并对负荷特性进行详细的分析。结果表明所提方法与其他负荷特征提取方法相比,有较好的负荷聚类效果。  相似文献   

13.
综合能源负荷场景生成是研究能源计量、规划运行等领域问题的基础,具有重要意义。但由于数据采集困难、综合能源负荷多能耦合等因素的限制,综合能源负荷场景的多样化生成仍是一大难题。提出了一种基于生成对抗网络(generative adversarial networks, GAN)的综合能源负荷场景生成方法。首先建立梯度惩罚优化的Wasserstein生成对抗网络模型,解决综合能源负荷的高随机性可能带来的不收敛或模式崩溃问题。其次,基于深度长短期记忆(long short-term memory, LSTM)的循环神经网络构建生成对抗网络的生成器和判别器,使模型更适用于复杂综合能源负荷数据生成。算例结果表明,所提模型的生成负荷场景在概率分布、曲线标志性特征和冷热电负荷之间相关性等方面相较于蒙特卡洛法和原始生成对抗网络均获得了较好结果,可以在不同模式下生成具有多样性且逼真的负荷场景。  相似文献   

14.
电力大客户电费回收风险一直都是电力公司关注的热点,但由于缺乏外部数据支撑和高效预警模型,使电费回收风险预警成为了一个难题。文中首先综合电力客户的电量、电费数据,以及电力客户在工商、税务、法院等部门的风险信息,建立电力大客户的电费回收风险指标体系。其次,基于熵值法得到的风险指标权重系数,过滤弱影响指标,采用相关性分析剔除重叠作用指标,得到客户电费回收风险预警指标。最后,基于深度学习中的长短期记忆(long short-term memory,LSTM)网络算法进行了客户电费回收风险预警。算例结果表明,提出的风险预警模型精确有效,且LSTM在准确率、查准率和查全率3个指标上较Logistic回归更加精准,能够精准定位风险客户,提高电费回收效率。  相似文献   

15.
心电监测作为无线体域网的一种重要应用,对心电信号重构精度要求较高,并且无线体域网中存在低功耗问题。现有的心电信号压缩感知重构算法虽然降低了功耗,但并未充分利用心电信号频域特性,造成重构精度不高。提出了一种基于静态阈值的无线体域网压缩感知心电降噪重构方法。该方法利用压缩感知理论,在传感器节点利用固定矩阵对心电信号进行观测,观测值被发送至汇聚节点后,再利用基于静态阈值的重构算法对心电信号进行降噪重构。仿真结果表明,该方法具有信号重构精度高、速度快和降噪性能好的优点。  相似文献   

16.
为提高风电功率爬坡预测的准确性,提出了一种基于卷积神经网络、长短期记忆网络和注意力机制的风电功率爬坡预测方法。首先,针对风电功率爬坡发生次数少、特征复杂、预测模型难以对小样本爬坡事件有效学习的问题,使用卷积神经网络对风电功率序列进行特征提取。然后,使用长短期记忆网络建立预测模型,解决风电功率的长时依赖问题,并在模型中加入注意力机制对长短期记忆网络单元的输出进行加权,从而加强风电特征的学习,提高爬坡预测准确度。仿真验证表明,模型对风电功率爬坡预测有较高的准确性。  相似文献   

17.

居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信成本增加,并引发信息安全问题。基于联邦学习框架,采用长短期记忆网络对居民负荷预测方法进行研究。利用真实居民负荷数据进行仿真计算分析,结果表明,基于联邦学习的居民负荷预测准确率和计算效率优于集中式。此外,将FedAvg、FedAdagrad、FedYogi三种联邦学习策略进行比较,采用具有自适应优化功能的FedAdagrad联邦学习策略对居民负荷预测的准确率更高,收敛性更强。

  相似文献   

18.
为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction, NWP)为原始输入,基于双层长短期记忆网络(longshort-term memory, LSTM)模型对风电功率进行初步预测。其次,利用极端梯度提升(eXtreme gradient boosting, XGBoost)算法构建误差估计模型,以便在给定未来一段时间内NWP数据的情况下对初步预测误差进行快速估计。然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测。进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征。最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性。  相似文献   

19.
电力系统短期负荷预测的共轭梯度ANN方法   总被引:3,自引:0,他引:3  
针对传统BP学习算法的缺陷,提出了基于共轭梯度优化技术的ANN学习算法。ANN模型中考虑了温度、天气情况的影响,可进行工作日、一般休息日和节假日的预测。计算表明,该ANN模型和学习算法实用、有效。  相似文献   

20.

随着压缩感知(compressed sensing,CS)在智能电网中的应用不断深入,其在非侵入式负荷监测(non-intrusive load monitoring,NILM)领域的研究表现出滞后性。为此,在分析NILM中的CS应用必要性后,该文针对CS在NILM中的应用研究进行展望和探索。首先,对CS原理与NILM流程进行融合分析,提出压缩感知在非侵入式负荷监测中的3种应用模式;然后,针对3种应用模式的具体流程,展望各应用模式的研究方向和适用场景。在此基础上,从CS要素和负荷分析两个方面,重点探讨CS在NILM中应用所需解决的关键技术,设计适应NILM的测量矩阵、稀疏基和重构算法等CS要素的改进思路,提出在CS框架下事件探测、负荷分解、负荷识别、特征提取等负荷分析方法的实现思路。该文所做工作旨在探索CS在NILM中的应用,以期为后续研究提供指导。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号