首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The jet stretch of dry‐jet wet spun PAN fiber and its effects on the cross‐section shape of fibers were investigated for a PAN‐DMSO‐H2O system. Clearly, the spinning parameters, such as dope temperature, bath concentration, bath temperature, and air gap, all influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio as well as that of jet stretch changed. Under given conditions, as the bath temperature was below 30°C or above 45°C, jet stretch had little effect on the cross‐sectional shapes of PAN fiber. Within the temperature of 30–45°C, fiber's cross‐section shapes change obviously from round over an approximate circular shape into to an elliptical or a flat shape. The scope of jet stretch produced PAN fiber with circular cross‐section was bigger than that in wet spinning. These results indicated that appropriate air gap height, under milder formation conditions in dry‐jet wet spinning, could result in higher jet stretch and higher postdrawing ratio. The appropriate jet stretch and postdrawing ratio could result in circular profile of PAN fiber, which were helpful to produce round PAN precursor with finer size and better properties for carbon fiber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

3.
A new gel‐spinning method was employed to prepare polyacrylonitrile (PAN) fibers from a PAN spinning solution with dimethylsulfoxide and water as a mixed solvent. Aging at 25 °C for 120 min brought the spinning solution to the sol–gel transition and a three‐dimensional gel formed before entering the coagulation bath. The as‐spun fibers from the solution at the sol–gel transition and in the gel state possess a circular cross‐section. Compared with dry‐jet wet‐spun fibers, the gel‐spun fibers have a more compact structure, fewer voids and better mechanical properties after a three‐stage drawing. Moreover, the gel‐spun fibers obtained from the extraction bath have a more homogeneous microstructure and better packed supermolecular structure. The physical properties of the extracted gel‐spun fibers are also better than those of coagulated gel‐spun fibers. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
对干湿法纺丝中PAN纤维的截面形状影响因素进行了研究。研究发现,凝固浴浓度和温度是影响纤维截面的主要因素,随着凝固浴浓度的增大和温度的升高,纤维截面逐渐由扁平形变为圆形,纤维截面的异形度逐渐减小;干湿法比湿法纺丝更有利于得到圆形截面的纤维;随着空气层高度的增大,纤维截面的异形度减小,但当空气层高度超过10mm时,纤维截面形状不再变化;在一定条件下,喷丝头拉伸比对纤维的截面形状有一定影响,后拉伸过程和干燥对纤维截而形状基本上没影响。  相似文献   

5.
Polyacrylonitrile (PAN) precursors were prepared by the wet spinning way. The effects of the coagulation conditions, such as coagulation temperature, coagulation ratio, and coagulation concentration, are discussed in detail. While keeping the coagulation bath concentration constant, as the coagulation bath temperature increased, the cross section deviated less from a circular form, and the as‐spun fiber diameter decreased. Measurement to the rate of the boundary movement has been calculated depending on the coagulation rate. While keeping the coagulation bath temperature constant, high coagulation bath concentration can cause more coagulant to diffuse into the solution to the polymer precipitated consequently, which led to a faster coagulation rate. The as‐spun fiber from high coagulation concentration was compacted than those from low concentration. The character of the formed structure reflected the system mobility and capability to crystallize. Improvement in fiber density in the as‐spun fiber resulted in improvements in the tensile strength of the as‐spun fiber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3723–3729, 2007  相似文献   

6.
Polyacrylonitrile (PAN) fibers have been gel spun from pregelled PAN spinning solution. The pregelled solution had network structure with elevated spinnability, the as‐spun fiber from which had more circular cross‐section and reduced skin‐core difference. Drawing was more effective in inducing the segmental orientation and crystallization in gel‐spun fiber than in dry–wet spun fiber. The mechanical properties of the gel‐spun fiber were better than those of the dry–wet spun fiber after multi‐stage drawing. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
The performance of carbon fibers depends on the quality of the precursor and the conditions of the thermal treatment. In detail, for a PAN precursor fiber the viscosity of a spinning dope and the draw ratio during the spinning process needs to be considered. Through wet spinning, different types of PAN precursor fibers with defined spinning parameters, including solid content, solvent content in a bath, and especially draw ratio resulting in defined cross section diameters, were fabricated and analyzed with tensile tests, density investigations, SEM, TGA‐MS, FTIR, and XRD. The results show that the mechanical properties of the fibers correlate to crystallinity. The cross section diameter is strongly related to the morphology of the fibers after thermal treatment. By extending the postdrawing of PAN fibers high tenacities were obtained at the cost of the cross section shape. In addition, TGA measurements reveal trapped residues of the wet spinning process as well as show several chemical reactions takes place at the same time at different temperatures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43698.  相似文献   

8.
This study examined the spinning of polyurethane‐based elastomeric fibers with the dry‐jet‐wet spinning method. The three important spinning variables that were chosen were the coagulation bath ratio (dimethylformamide/water), the bath temperature, and the stretch ratio. A three‐variable factorial design method, proposed by Box and Behnken, was used to optimize these process parameters. The spinning process was further fine‐tuned by the variation of the stretch ratio and the dope solid content. The effect of the dry‐jet length on the fiber properties was also studied. The tenacity and elastic recovery properties of the fibers were found to be optimum at a bath ratio (dimethylformamide/water) of 60 : 40, a bath temperature of 15°C, and a stretch ratio of 2.5. The density and sonic modulus were measured to determine the effect of varying the process variables on structural parameters such as the density and orientation. The surface morphological features, as revealed by scanning electron microscopy, were correlated to the fiber properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
干-喷湿纺聚丙烯腈纤维拉伸工艺研究   总被引:1,自引:0,他引:1  
研究了干 -喷湿纺聚丙烯腈 (PAN)初生纤维的喷丝头拉伸比和三级拉伸 (空气拉伸、DMF浴拉伸、热水和沸水拉伸、干热拉伸 )工艺中各拉伸比对纤维性能的影响。结果表明 :提高喷丝头拉伸比可明显地降低初生纤维的线密度 ,提高强度 ;三级拉伸工艺中各拉伸比的提高均有利于PAN纤维线密度的减小及其强度、声速取向度和抗张模量的提高 ;合理调配三级拉伸中各拉伸比可制得强度超过 7.0cN/dtex的PAN纤维  相似文献   

10.
采用三角形喷丝板,以二甲基亚砜为溶剂,进行聚丙烯腈(PAN)湿法纺丝。探讨凝固成形条件及后拉伸对三角形PAN纤维截面形状、声速和力学性能的影响。结果表明:随着凝固浴浓度的升高,PAN初生纤维的异形度降低,声速和力学性能均先升高后降低;随着凝固浴温度的升高,PAN初生纤维的异形度增大,声速和力学性能均降低;随着喷丝头拉伸比的增加,PAN初生纤维的异形度增加,声速和力学性能也都呈上升趋势,随着后拉伸的进行,三角形PAN纤维的异形度基本保持不变,其力学性能和声速均逐渐升高。  相似文献   

11.
The effect of coagulation bath condition on the structure and property of the nascent fibers and polyacrylonitrile fibers during wet‐spinning is studied. The best coagulation condition to produce polyacrylonitrile fibers has been found by examination of EA, XRD, SEM, and so on. The results indicated that when the coagulation bath was DMSO/H2O system, the temperature was 60°C, the concentration was 65%, the minus stretch ratio was ?10%, fine crystallites and high degree of crystallization in the nascent fibers and polyacrylonitrile fibers could be achieved, and less solvents remained in the nascent fibers with circular cross section morphology. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
The study examined the effect of different wet spinning parameters (e.g., total solid content, coagulation bath concentration, drawing, and stretching) on the morphology and mechanical properties of the wet spun alpaca/polyacrylonitrile (PAN) composite fibers. The alpaca/PAN composite fibers were wet spun using 10, 20, and 30% of alpaca particles along with the PAN polymer. The shear-thinning or non-Newtonian flow behavior was observed among the dope solutions with different solid content. The cross-sectional fiber morphology showed the bean-shaped characteristic for the control PAN fibers, whereas the alpaca/PAN composite fibers exhibited almost circular shape. “Cavity healing” was observed, where noticeable voids and porous areas were demolished in the cross section of the composite fibers, by changing the total solid content and coagulation bath concentration. Although the control PAN fibers exhibited the highest tenacity with lower fiber diameter, the alpaca/PAN composite fibers showed a gradual deterioration in tenacity while adding alpaca particles into the PAN polymeric matrix. Nevertheless, due to the increment in the total solid content, higher draw ratio, and stretching of the fibers, the tenacity, molecular orientation, and the crystallinity of the composite fibers were increased.  相似文献   

13.
The dry–jet–wet spinning process was employed to spin poly(lactic acid)(PLA) fiber by the phase inversion technique using chloroform and methanol as solvent and nonsolvent, respectively, for PLA. The as spun fiber was subjected to two‐stage hot drawing to study the effect of various process parameters, such as take‐up speed, drawing temperature, and heat‐setting temperature on the fiber structural properties. The take‐up speed had a pronounced influence on the maximum draw ratio of the fiber. The optimum drawing temperature was observed to be 90°C to get a fiber with the tenacity of 0.6 GPa for the draw ratio of 8. The heat‐setting temperature had a pronounced effect on fiber properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3774–3780, 2006  相似文献   

14.
In this article, the effect of jet stretch ratio on the extrudate die‐swell effect of polyacrylonitrile spinning solution and the structure and properties of as‐spun fibers was systematically analyzed by means of X‐ray diffraction (XRD), electron microprobe analysis, and the measurement of die‐swell ratio, boiling‐water shrinkage, porosity, mechanical properties analysis, etc. It revealed the formation mechanism of the die‐swell effect and spin orientation and its influences on the structure and properties of as‐spun fibers. It showed that with the increase of the jet stretch ratio the die‐swell ratio became smaller, both the degree of spin orientation and the crystallinity increased, the microstructure of as‐spun fibers became compact and homogeneous, and the cross section tended to be circular. As a result, the breaking tenacity of as‐spun fibers and resultant precursors all increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3348–3352, 2007  相似文献   

15.
An experimental study has been carried out to investigate the effects of spinning conditions on the shape of fibers spun through noncircular spinnerette holes, namely, rectangular holes, trilobal holes, and round holes with lugs. For the study, bench-scale apparatuses of wet spinning and melt spinning were used which had been constructed in connection with an earlier study by Han. In the wet-spinning experiment, the spin dope used was an aqueous solution of polyacrylonitrile (PAN) consisting of approximately 10% polymer and 40% sodium thiocyanate (NaSCN), and the spin dope was spun into aqueous solutions of NaSCN. In the melt-spinning experiment, polystyrene was used. The variables investigated were: size and shape of the spinnerette hole, coagulating bath concentration, throughput rate, and jet stretch. It has been found in wet spinning that, for a given shape of spinnerette hole, the fiber shape is most strongly affected by jet stretch and relatively little by the bath concentration and throughput rate. Also determined in the wet-spinning experiment was the maximum jet stretch at which thread breakage occurs. It has been found that the maximum jet stretch decreases as bath concentration is increased.  相似文献   

16.
The spinnability of a spinning solution using DMSO as the solvent was investigated for dry‐jet wet spinning of PAN precursor fiber. Among many variables responsible for spinnability, the coagulating conditions, the air gap length, the nonsolvent content in spinning solution, and the spinning temperature have been viewed as the key factors, and they were investigated in this study. It was found however, unlike in the wet spinning, the spinnability in dry‐jet wet spinning process was barely influenced by the coagulating conditions, likely attributable to the existence of the air gap. However, the spinnability worsened when the air gap was longer than 30 mm. The quality of the spinning solution deteriorated with the increasing water content in it. The spinnability improved when the spinning temperature was maintained between 60 and 72°C and turned down once the temperature was over 72°C. The experimental results indicated that all the factors should be comprehensively considered to ensure good spinnability in dry‐jet wet spinning process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
DMSO湿法PAN纤维截面形状形成条件的研究   总被引:3,自引:0,他引:3  
对DMSO(二甲基亚砜)湿法制备PAN(聚丙烯腈)纤维的截面形状的形成因素进行了研究。随着凝固浴浓度的增大和温度的升高,纤维截面形状由椭圆形或肾形逐渐变为圆形。当凝固浴浓度在一定范围(55%-70%)时,不同凝固浴浓度对应一个凝固浴温度下限值,在该下限温度以上都可得到圆形截面纤维,且凝固浴浓度越低,此下限温度越高。纤维离开凝固浴后,截面形状基本形成并固定,水洗、拉伸、喷丝速度和干燥对纤维截面形状的形成影响都很小。  相似文献   

18.
湿纺凝固条件对PAN初生纤维形态结构的影响   总被引:5,自引:0,他引:5  
分析了凝固浴温度、浓度、表观负拉伸等凝固条件对聚丙烯睛初生纤维形态结构的影响规律及作用机理,得出最佳的凝固工艺参数。结果表明:在其他凝固参数不变时,凝固浴温度、浓度及表观负拉伸均存在各自的临界值,低于或超过此临界值,初生纤维及原丝的性能均下降;采用凝固浴温度60℃、凝固浴质量分数为65%的最佳凝固工艺参数,可获得截面圆形且结构致密的初生纤维,并制得力学性能优异的原丝。  相似文献   

19.
聚丙烯腈熔融纺丝技术进展   总被引:5,自引:0,他引:5  
叙述了聚丙烯腈的结构特征,丙烯腈聚合物的增塑,增塑和非增塑聚丙烯腈熔融纺丝工艺和纤维性质。熔纺制得的聚丙烯腈纤维,适用于纺织、地毯以及用作碳纤维原丝。增塑熔融纺丝技术已达到相当高的水平,熔纺纤维的形态与普通聚丙烯腈纤维类似,但存在皮芯结构,芯部有微孔。制得的聚丙烯腈基碳纤维原丝,拉伸强度达5.5~6.6cN/dtex,用这种原丝生产的碳纤维的拉伸强度约为3.6×103MPa,模量约为2.33×105MPa,伸长率约为1.5%,可制得性能优良的航空航天用复合材料。非增塑熔融纺丝,采用特定的丙烯腈聚合物和纺丝条件,不添加任何增塑剂,用普通熔融纺丝机在1000m/min或2000m/min以上的速度纺丝,经拉伸可得强度2.2~11cN/dtex、伸长率5%~30%和模量55~222cN/dtex的纤维。  相似文献   

20.
The concentrated polyacrylonitrile (PAN) solutions were prepared with 1‐butyl‐3‐methylimidazolium chloride ([BMIM]Cl) as solvent by static state, stirring, and kneading. The steady and oscillatory shear tests were carried out to investigate the viscoelastic behaviors of the PAN/[BMIM]Cl solutions by rotational rheometer. It was found that the zero shear‐rate viscosity and relaxation time of the solution prepared by kneading were lowest and the non‐Newtonian index was largest among the solution. During kneading, the gelation temperature of the viscous and homogenous solution was at the lowest temperature 22.7°C among the all three solutions. Only the solutions prepared by stirring and kneading could be spun by dry‐jet wet spinning technology. The fiber processed with the solution prepared by kneading could be drawn with a higher draw ratio, showing the larger draw ability. The supramolecular structure and properties of the fibers were studied by synchrotron wide‐angle X‐ray diffraction (WAXD) technologies, dynamic mechanical analysis (DMA), and mechanical tests. All the results showed that the kneading is an efficient method for PAN fiber spinning with [BMIM]Cl as solvent. It lead to the investigation of the methods of preparation of PAN solution in [BMIM]Cl, which affect the homogeneity of the solutions and hence the resulting characteristics of PAN fibers. POLYM. ENG. SCI., 55:558–564, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号