首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
由于中文短文本存在特征词少、规范性差、数据规模量大等难点,ERNIE预训练模型占用内存大,进行短文本分类时会造成向量空间稀疏、文本预训练不准确、时间复杂度高等问题。针对以上短文本分类存在的问题,提出基于ERNIE-RCNN模型的中文短文本分类。模型运用ERNIE模型作为词向量,对实体和词语义单元掩码,后连接Transformer的编码层,对ERNIE层输出的词嵌入向量进行编码,优化模型过拟合问题,增强泛化能力,RCNN模型对ERNIE输入的词向量进行特征提取,卷积层利用大小不同的卷积核提取大小不同的特征值,池化层进行映射处理,最后通过softmax进行分类。将该模型与七种深度学习文本分类模型在中文新闻数据集上进行训练实验,得到了模型在准确率、精准率、召回率、F1值、迭代次数、运行时间上的对比结果,表明ERNIE-RCNN模型能够很好地提取文本中的特征信息,减少了训练时间,有效解决了中文短文本分类的难点,具有很好的分类效果。  相似文献   

2.
针对传统的短文本分类方法大量使用语法标签和词库导致产生语言依赖的问题,提出一种基于语言无关性语义核学习的短文本分类方法。首先,利用短文本的语义信息从文档中提取模式;然后,以三个标注层(词、文档和类别)标注提取出的每个模式;最后,根据三个标注层次计算文档之间的相似度,并根据相似度完成分类。在英语和汉语数据集上的实验验证了该方法的有效性。实验结果表明,相比其他几种核方法,该方法取得了更好的分类性能。  相似文献   

3.
短文本特征稀疏、上下文依赖性强的特点,导致传统长文本分类技术不能有效地被直接应用。为了解决短文本特征稀疏的问题,提出基于Sentence-LDA主题模型进行特征扩展的短文本分类方法。该主题模型是隐含狄利克雷分布模型(Latent Dirichlet Allocation, LDA)的扩展,假设一个句子只产生一个主题分布。利用训练好的Sentence-LDA主题模型预测原始短文本的主题分布,从而将得到的主题词扩展到原始短文本特征中,完成短文本特征扩展。对扩展后的短文本使用支持向量机(Support Vector Machine, SVM)进行最后的分类。实验显示,与传统的基于向量空间模型(Vector Space Model,VSM)直接表示短文本的方法比较,本文提出的方法可以有效地提高短文本分类的准确率。  相似文献   

4.
中文短文本自身包含词汇个数少、描述信息能力弱,常用的文本分类方法对于短文本分类效果不理想。同时传统的文本分类方法在处理大规模文本分类时会出现向量维数很高的情况,造成算法效率低,而且一般用于长文本分类的特征选择方法都是基于数理统计的,忽略了文本中词项之间的语义关系。针对以上问题本文提出基于卡方特征选择和LDA主题模型的中文短文本分类方法,方法使用LDA主题模型的训练结果对传统特征选择方法进行特征扩展,以达到将数理信息和语义信息融入分类算法的目的。对比试验表明,这种方法提高了中文短文本分类效果。  相似文献   

5.
在文本分类任务中,由于短文本具有特征稀疏,用词不规范等特点,传统的自然语言处理方法在短文本分类中具有局限性.针对短文本的特点,本文提出一种基于BERT(bidirectional encoder representations from Transformers)与GSDMM(collapsed Gibbs sampl...  相似文献   

6.
中文短文本自身包含词汇个数少、描述信息能力弱,常用的文本分类方法对于短文本分类效果不理想。同时传统的文本分类方法在处理大规模文本分类时会出现向量维数很高的情况,造成算法效率低,而且一般用于长文本分类的特征选择方法都是基于数理统计的,忽略了文本中词项之间的语义关系。针对以上问题本文提出基于卡方特征选择和LDA主题模型的中文短文本分类方法,方法使用LDA主题模型的训练结果对传统特征选择方法进行特征扩展,以达到将数理信息和语义信息融入分类算法的目的。对比试验表明,这种方法提高了中文短文本分类效果。  相似文献   

7.
短文本分类是互联网文本数据处理中的关键任务之一.长短时记忆网络LSTM(long short-term memory)和卷积神经网络CNN(convolutional neural network)是广泛应用于短文本分类任务的两种深度学习模型.在计算机视觉和语音识别领域的深度学习研究表明,深层次的神经网络模型具有较好的表达数据特征的能力.受此启发,面向文本深度学习分类问题,提出基于3层LSTM和CNN网络结构的ResLCNN(residual-LSTM-CNN)深度学习模型.该模型有效结合LSTM获取文本序列数据的长距离依赖特征和CNN通过卷积操作获取句子局部特征的优势,同时借鉴残差模型理论,在第1层LSTM层与CNN层之间加入恒等映射,构建残差层,缓解深层模型梯度消失问题.为了探究深层短文本分类中ResLCNN模型的文本分类能力,在多种数据集上将其与LSTM、CNN及其组合模型进行对比实验.结果表明,相比于单层LSTM与CNN组合模型,ResLCNN深层模型在MR、SST-2和SST-5数据集上分别提高了1.0%、0.5%、0.47%的准确率,取得了更好的分类效果.  相似文献   

8.
9.
短文本语义稀疏模糊、蕴含信息不足、表达不规则等缺陷给短文本分类任务带来了极大的挑战,且现有短文本分类方法通常忽略词项间的交互信息,不能充分挖掘隐含的语义信息,导致分类效率低下。针对上述问题,提出一种基于多粒度图与注意力机制的半监督短文本分类模型MgGAt。该模型在词粒度和文本粒度基础上构建2种类型的图,通过充分挖掘语义信息完成分类任务。首先构建词级图,捕获词嵌入,进而学习得到文本特征表示。在词级图上引入跳内注意力和跳间注意力,从多种语义角度有效提取词项间隐含的高阶信息,捕获语义丰富的词嵌入。同时依据词级子图的特点设计池化策略,聚合词嵌入,学习文本表征。其次构建文本级图,借助部分已知的标签信息,利用图神经网络的优势,在图上执行标签传播和推理,完成半监督短文本分类任务。在4个公开数据集上的实验结果表明,与基线模型相比,MgGAt模型的短文本分类精确率平均提升了1.18个百分点,F1值平均提升了1.37个百分点,具有更好的分类性能。  相似文献   

10.
基于领域词语本体的短文本分类   总被引:2,自引:0,他引:2  
短文本自身长度较短,描述概念能力弱,常用文本分类方法都不太适用于短文本分类.提出了基于领域词语本体的短文本分类方法.首先抽取领域高频词作为特征词,借助知网从语义方面将特征词扩展为概念和义元,通过计算不同概念所包含相同义元的信息量来衡量词的相似度,从而进行分类.对比实验表明,该方法在一定程度上弥补了短文本特征不足的缺点,且提高了准确率和召回率.  相似文献   

11.
传统主题模型方法很大程度上依赖于词共现模式生成文档主题, 短文本由于缺乏足够的上下文信息导致的数据稀疏性成为传统主题模型在短文本上取得良好效果的瓶颈. 基于此, 本文提出一种基于语义增强的短文本主题模型, 算法将DMM (Dirichlet Multinomial Mixture)与词嵌入模型相结合, 通过训练全局词嵌...  相似文献   

12.
基于上下文的短信文本分类方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对海量短信文本数据中大量词语共现的特点,提出一种基于上下文的短信文本分类方法。利用词语的上下文关系,定义词语相似度和基于上下文的词语权值,科学地表达词语在该类别中的语义表示,以提高短信文本分类效率。实验结果表明,与传统的简单向量距离分类法相比,该方法的分类效果较优。  相似文献   

13.
肖琳  陈博理  黄鑫  刘华锋  景丽萍  于剑 《软件学报》2020,31(4):1079-1089
自大数据蓬勃发展以来,多标签分类一直是令人关注的重要问题,在现实生活中有许多实际应用,如文本分类、图像识别、视频注释、多媒体信息检索等.传统的多标签文本分类算法将标签视为没有语义信息的符号,然而,在许多情况下,文本的标签是具有特定语义的,标签的语义信息和文档的内容信息是有对应关系的,为了建立两者之间的联系并加以利用,提出了一种基于标签语义注意力的多标签文本分类(LAbel Semantic Attention Multi-label Classification,简称LASA)方法,依赖于文档的文本和对应的标签,在文档和标签之间共享单词表示.对于文档嵌入,使用双向长短时记忆(bi-directional long short-term memory,简称Bi-LSTM)获取每个单词的隐表示,通过使用标签语义注意力机制获得文档中每个单词的权重,从而考虑到每个单词对当前标签的重要性.另外,标签在语义空间里往往是相互关联的,使用标签的语义信息同时也考虑了标签的相关性.在标准多标签文本分类的数据集上得到的实验结果表明,所提出的方法能够有效地捕获重要的单词,并且其性能优于当前先进的多标签文本分类...  相似文献   

14.
文本分类是目前深度学习方法被广泛应用的重要领域之一.本文设计了一种基于循环神经网络和胶囊网络的混合模型,使用胶囊网络来克服卷积神经网络对空间不敏感的缺点,学习文本局部与整体之间的关系特征,并使用循环神经网络中的GRU神经网络经过最大池化层来学习上下文显著信息特征,结合两者来优化特征提取过程从而提高文本分类效果.与此同时,在嵌入层中提出了一种基于缺失词补全的混合词向量方法,采用两种策略来减少缺失词过度匹配的现象以及降低词向量中的噪声数据出现的概率,从而获得语义丰富且少噪声的高质量词向量.在经典文本分类数据集中进行实验,通过与对比模型的最优方法进行比较,证明了该模型和方法能有效地提升文本分类准确度.  相似文献   

15.
进入21世纪以来,知识数据大量存储在文档中,但各类文档的粒度和结构不便于知识的加工、整合和管理. 如何从这些无序的、非结构化的数据(知识)源中提取语义,首要任务是将蕴藏在数据、信息中的知识抽取出来,建立文本资源的语义网,采用RDF来表示语义数据,其次采用TFIDF算法计算得出文本特征词的可信度,最后将文本信息录入到数据库中,实现文本类资源的自动分类,最终目的是实现文本资源知识的共享.  相似文献   

16.
针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer的双向编码器表示(BERT)的中文短文本分类算法,使用BERT预训练语言模型对短文本进行句子层面的特征向量表示,并将获得的特征向量输入Softmax回归模型进行训练与分类。实验结果表明,随着搜狐新闻文本数据量的增加,该算法在测试集上的整体F1值最高达到93%,相比基于TextCNN模型的短文本分类算法提升6个百分点,说明其能有效表示句子层面的语义信息,具有更好的中文短文本分类效果。  相似文献   

17.
针对标签随着时间变化的动态多标签文本分类问题,提出了一种基于标签语义相似的动态多标签文本分类算法。该算法在训练阶段,首先按照标签固定训练得到一个基于卷积神经网络的多标签文本分类器,然后以该分类器的倒数第二层的输出为文本的特征向量。由于该特征向量是在有标签训练得到的,因而相对于基于字符串即文本内容而言,该特征向量含有标签语义信息。在测试阶段,将测试文档输入训练阶段的多标签文本分类器获取相应的特征向量,然后计算相似性,同时乘以时间衰减因子修正,使得时间越近的文本具有较高的相似性。最后,采用最近邻算法分类。实验结果表明,该算法在处理动态多标签文本分类问题上具有较优的性能。  相似文献   

18.
针对互联网短文本特征稀疏和速度更新快而导致的短文本聚类性能较差的问题,本文提出了一种基于特征词向量的短文本聚类算法。首先,定义基于词性和词长度加权的特征词提取公式并提取特征词代表短文本;然后,使用Skip-gram模型(Continous skip-gram model)在大规模语料中训练得到表示特征词语义的词向量;最后,引入词语游走距离(Word mover′s distance,WMD)来计算短文本间的相似度并将其应用到层次聚类算法中实现短文本聚类。在4个测试数据集上的评测结果表明,本文方法的效果明显优于传统的聚类算法,平均F值较次优结果提高了56.41%。  相似文献   

19.
如何从文本中抽取出能够体现文本特点的关键特征,抓取特征到类别之间的映射是文本分类核心问题之一。传统的词袋模型的优点是将每个词视为一个特征,而缺点是计算成本会随特征数量和文本与特征之间的关系的增加而增加,并且没有考虑文本特征自身的语义关系,语义关系的优势是获取文本和特征之间的相关性。针对这个问题,提出一种增强混合特征选择方法,该方法使用混合特征选择进行降维,然后再使用词向量对低频词进行语义增强。为了验证增强的混合特征选择对文本分类的作用,构建了两个实验,使用LSTM算法进行分类模型训练与测试。对爬取的71825个新闻文本数据进行实验表明,基于语义的增强混合特征选择方法在文本分类时既提高了分类效率又能保证分类精度。  相似文献   

20.
近年来,卷积神经网络模型常常被用于文本情感分类的研究中,但多数研究都会忽略文本特征词本身所携带的情感信息和中文文本分词时被错分的情况.针对此问题,提出一种融合情感特征的双通道卷积神经网络情感分类模型(Dual-channel Convolutional Neural Network sentiment classifi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号