首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于图像分类的矢量量化数字水印算法*   总被引:1,自引:2,他引:1  
通过提取熵和标准差两个特征对图像进行分类,将分类结果采用PNN算法进行矢量量化,将其生成的码书作为LBG算法的初始码书以降低该算法对初始码书敏感的缺点。同时在水印提取过程中,首先对码书进行预处理以减少图像攻击对码书的影响,再提取水印图像。实验证明,使用该方法不仅得到了较高的图像质量,而且对常见的攻击也具有鲁棒性。另外,在传输过程中对码书和索引值的窜改,也具有一定的抗攻击性。  相似文献   

2.
针对传统学习矢量量化算法没有考虑属性的重要度差异的问题,提出一种加权学习矢量量化算法.该算法为每一维属性引入一个权重系数,用其表征相应属性在分类过程中的重要程度,并与权向量一同更新.利用输入样本和获胜神经元之间的修正距离的均值,控制权重系数更新的阈值及步长.距离均值确保了更新过程的稳定性,且无需进行权重系数的归一化操作.UCI机器学习数据库中6组数据的实验结果表明,该算法能够有效给出数据的本质属性,尤其是局部型权重系数.与传统学习矢量量化算法及其改进算法相比,识别率高、性能稳定、计算复杂度低.  相似文献   

3.
对典型的竞争学习算法进行了研究和分析,提出了一种基于神经元获胜概率的概率敏感竞争虎法。与传统竞争学习算法只有一个神经元获胜而得到学习不同,PSCL算法按照各种凶的获胜概率并通过对失真距离的调整使每个神经元均得到不同的学习,可以有效地克服神经元欠利用问题。  相似文献   

4.
王修君  沈鸿 《计算机学报》2007,30(8):1277-1285
KNN作为一种简单的分类方法在文本分类中有广泛的应用,但存在着计算量大和训练文档分布不均所造成的分类准确率下降等同题.针对这些问题,基于最小化学习误差的增量思想,该文将学习型矢量量化(LVQ)和生长型神经气(GNG)结合起来提出一种新的增量学习型矢量量化方法,并将其应用到文本分类中.文中提出的算法对所有的训练样本有选择性地进行一次训练就可以生成有效的代表样本集,具有较强的学习能力.实验结果表明:这种方法不仅可以降低KNN方法的测试时间,而且可以保持甚至提高分类的准确性.  相似文献   

5.
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练.Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本.根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本.根据样本平面距离提出了MSPDISVM (minimum sample plane distance incremental support vector machines)算法.实验结果表明,MSPDISVM比Liva Ralaivola提出的算法有更快的速度,而精度没有太大的差异.使用样本平面距离可以有效地去除新增样本最近邻中的冗余样本.  相似文献   

6.
矢量量化的误差竞争学习算法   总被引:7,自引:0,他引:7  
提出了误差竞争学习(Distortion copmpetitive learning,DCL)算法。该算法基于Gersho的矢量量化误差渐近理论的等误差原则,即当码本数趋于无穷大时,各区域子误差相等,使用这个原则作为最优码书设计的一个必要条件,并结合传统最优码书设计的两个必要条件,然后根据这3个必要条件:(1)最近邻规则;(2)中心准则;(3)各区域了误差近似相等设计最优码书,而在算法的实现中引入  相似文献   

7.
低速语音编码中的预测分类分裂矢量量化技术*   总被引:1,自引:0,他引:1  
为降低编码速率的同时仍能提供较好的谱失真性能,提出了一种预测分类分裂矢量量化算法,它根据线谱对的特点,融合了预测、分类、分裂的方法对线谱对进行量化,加入了记忆性。实验证明与其他几种方法相比,该算法的量化性能在速率与失真间达到了较好的平衡,且计算量大大降低,仅占有内存有所增加。  相似文献   

8.
实现有效的财务失败预测对于银行、投资者、企业和政府管理机构来说具有重要的意义,因而相关研究一直在金融信息处理领域中备受关注.近年来,神经网络方法被引入该领域并成为新的研究热点.文中分别利用160家和384家公司的财务数据作为训练集和测试集,首次将学习矢量量化(LVQ)算法应用至中国上市公司的财务失败预测模型的构建,并与传统的BP神经网络、对数回归模型、C4.5决策树等方法进行了实证分析比较.研究结果表明学习矢量量化算法与这些传统方法相比具有更高的预测精度,在此领域有着良好的应用前景.  相似文献   

9.
10.
提出了一种小波变换和分类矢量量化相结合的方法,利用方向树结构构成矢量,并对矢量按能量进行分类,结合非线性插值方法进行矢量量化。矢量的构成充分考虑了小波系数的带内以及带间相关性。仿真结果表明,该方法能够获得较高的编码效率。  相似文献   

11.
增量学习广泛运用于人工智能、模式识别等诸多领域,是解决系统在训练初期样本量少而随时间推移性能降低的有效方法。本文针对经典支持向量机当训练样本数量多而运算速度较慢的缺点,在分析支持向量机的基础上,提出基于驱动错误准则的增量学习方法,实验结果表明,该算法不仅能保证学习机器的精度和良好的推广能力,而且算法的学习速度比经典的SVM算法快,可以进行增量学习。  相似文献   

12.
姜雪  陶亮  王华彬  武杰 《微机发展》2007,17(11):92-95
在增量学习过程中,随着训练集规模的增大,支持向量机的学习过程需要占用大量内存,寻优速度非常缓慢。在现有的一种支持向量机增量学习算法的基础上,结合并行学习思想,提出了一种分层并行筛选训练样本的支持向量机增量学习算法。理论分析和实验结果表明:与原有的算法相比,新算法能在保证支持向量机的分类能力的前提下显著提高训练速度。  相似文献   

13.
在增量学习过程中,随着训练集规模的增大,支持向量机的学习过程需要占用大量内存,寻优速度非常缓慢。在现有的一种支持向量机增量学习算法的基础上,结合并行学习思想,提出了一种分层并行筛选训练样本的支持向量机增量学习算法。理论分析和实验结果表明:与原有的算法相比,新算法能在保证支持向量机的分类能力的前提下显著提高训练速度。  相似文献   

14.
基于超球支持向量机的类增量学习算法研究   总被引:2,自引:1,他引:2  
提出了一种超球支持向量机类增量学习算法.对每一类样本,利用超球支持向量机在特征空间中求得包围该类尽可能多样本的最小超球,使各类样本之间通过超球隔开.类增量学习过程中,只对新增类样本进行训练,使得该算法在很小的样本集、很小的空间代价下实现了类增量学习,大大降低了训练时间,同时保留了历史训练结果.分类过程中,通过计算待分类样本到各超球球心的距离判定其所属类别,分类简单快捷.实验结果证明,该算法不仅具有较高的训练速度,而且具有较高的分类速度和分类精度.  相似文献   

15.
We introduce a batch learning algorithm to design the set of prototypes of 1 nearest-neighbour classifiers. Like Kohonen's LVQ algorithms, this procedure tends to perform vector quantization over a probability density function that has zero points at Bayes borders. Although it differs significantly from their online counterparts since: (1) its statistical goal is clearer and better defined; and (2) it converges superlinearly due to its use of the very fast Newton's optimization method. Experiments results using artificial data confirm faster training time and better classification performance than Kohonen's LVQ algorithms.  相似文献   

16.
本文针对传统的增量学习算法无法处理后采集到的样本中含有新增特征的问题,设计适应样本特征维数增加的训练算法。在基于最小二乘支持向量机的基础上,提出了特征增量学习算法。该算法充分利用先前训练得到的分类器的结构参数,仅对新增特征采用最小二乘支持向量机进行学习。实验结果表明,该算法能够在保证分类精度的同时,有效效地提高训练速度并降低存储空间。  相似文献   

17.
支持向量机已经成为处理大规模高维数据的一种有效方法。然而处理大规模数据需要的时间和空间代价很高,增量学习可以解决这个问题。该文分析了支持向量的性质和增量学习的过程,提出了一种新的增量学习算法,舍弃了对最终分类无用的样本,在保证测试精度的同时减少了训练时间。最后的数值实验和应用实例说明:算法是可行的、有效的。  相似文献   

18.
一种基于类支持度的增量贝叶斯学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
丁厉华  张小刚 《计算机工程》2008,34(22):218-219
介绍增量贝叶斯分类器的原理,提出一种基于类支持度的优化增量贝叶斯分类器学习算法。在增量学习过程的样本选择问题上,算法引入一个类支持度因子λ,根据λ的大小逐次从测试样本集中选择样本加入分类器。实验表明,在训练数据集较小的情况下,该算法比原增量贝叶斯分类算法具有更高的精度,能大幅度减少增量学习样本优选的计算时间。  相似文献   

19.
An Incremental Learning Strategy for Support Vector Regression   总被引:1,自引:0,他引:1  
Support vector machine (SVM) provides good generalization performance but suffers from a large amount of computation. This paper presents an incremental learning strategy for support vector regression (SVR). The new method firstly formulates an explicit expression of ||W||2 by constructing an orthogonal basis in feature space together with a basic Hilbert space identity, and then finds the regression function through minimizing the formula of ||W||2 rather than solving a convex programming problem. Particularly, we combine the minimization of ||W||2 with kernel selection that can lead to good generalization performance. The presented method not only provides a novel way for incremental SVR learning, but opens an opportunity for model selection of SVR as well. An artificial data set, a benchmark data set and a real-world data set are employed to evaluate the method. The simulations support the feasibility and effectiveness of the proposed approach.  相似文献   

20.
为了获取最小决策规则,当增加新例子时,传统的方法通常需要对决策表中所有数据重新计算,效率欠佳。为了尽量减少重复计算量,该文从Roughset理论出发,提出了一种新的增量式学习算法和最小重新计算的标准,并且用理论和实验对新算法和传统算法在算法复杂度上做了对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号