共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
针对传统学习矢量量化算法没有考虑属性的重要度差异的问题,提出一种加权学习矢量量化算法.该算法为每一维属性引入一个权重系数,用其表征相应属性在分类过程中的重要程度,并与权向量一同更新.利用输入样本和获胜神经元之间的修正距离的均值,控制权重系数更新的阈值及步长.距离均值确保了更新过程的稳定性,且无需进行权重系数的归一化操作.UCI机器学习数据库中6组数据的实验结果表明,该算法能够有效给出数据的本质属性,尤其是局部型权重系数.与传统学习矢量量化算法及其改进算法相比,识别率高、性能稳定、计算复杂度低. 相似文献
3.
对典型的竞争学习算法进行了研究和分析,提出了一种基于神经元获胜概率的概率敏感竞争虎法。与传统竞争学习算法只有一个神经元获胜而得到学习不同,PSCL算法按照各种凶的获胜概率并通过对失真距离的调整使每个神经元均得到不同的学习,可以有效地克服神经元欠利用问题。 相似文献
4.
KNN作为一种简单的分类方法在文本分类中有广泛的应用,但存在着计算量大和训练文档分布不均所造成的分类准确率下降等同题.针对这些问题,基于最小化学习误差的增量思想,该文将学习型矢量量化(LVQ)和生长型神经气(GNG)结合起来提出一种新的增量学习型矢量量化方法,并将其应用到文本分类中.文中提出的算法对所有的训练样本有选择性地进行一次训练就可以生成有效的代表样本集,具有较强的学习能力.实验结果表明:这种方法不仅可以降低KNN方法的测试时间,而且可以保持甚至提高分类的准确性. 相似文献
5.
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练.Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本.根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本.根据样本平面距离提出了MSPDISVM (minimum sample plane distance incremental support vector machines)算法.实验结果表明,MSPDISVM比Liva Ralaivola提出的算法有更快的速度,而精度没有太大的差异.使用样本平面距离可以有效地去除新增样本最近邻中的冗余样本. 相似文献
6.
7.
相较于一次性获得所有训练数据的批量学习,小样本类增量学习具有更高的现实意义,它既能使机器学习更接近人类智能水平,又可以减少深度学习模型对大量训练数据的依赖。为缓解小样本类增量学习对旧类的遗忘,同时使分类过程不受任何因素的干扰,提出一种基于因果关系的小样本类增量学习策略。首先,采用干预式小样本学习剔除预训练知识所产生的混淆影响,使样本特征与分类标签具有真实的因果关系;其次,采用基于因果效应的类增量学习方法,通过在旧数据与最终标签间建立通路达到数据重放的因果效应,缓解灾难性遗忘;最后,采用随机情节选择策略增强特征的可扩展性,使它适应后续的增量学习。在miniImageNet与CIFAR100数据集上的实验结果表明,所提方法在1~8轮的增量学习过程中取得了最优的平均精度,同时具有一定稳定性、可解释性。 相似文献
8.
实现有效的财务失败预测对于银行、投资者、企业和政府管理机构来说具有重要的意义,因而相关研究一直在金融信息处理领域中备受关注.近年来,神经网络方法被引入该领域并成为新的研究热点.文中分别利用160家和384家公司的财务数据作为训练集和测试集,首次将学习矢量量化(LVQ)算法应用至中国上市公司的财务失败预测模型的构建,并与传统的BP神经网络、对数回归模型、C4.5决策树等方法进行了实证分析比较.研究结果表明学习矢量量化算法与这些传统方法相比具有更高的预测精度,在此领域有着良好的应用前景. 相似文献
10.
在对轨迹流矢量进行量化编码的基础上,提出了一种基于深度优先搜索的轨迹分布模式提取算法,生成了能够描述轨迹分布的序列模式图,并给出了与之相应的异常检测和行为预测方法。对不同场景的可见光和红外序列图像的实验表明,本文方法不仅能够学习轨迹中流矢量的分布,而且能够反映它们之间的时序关系,可以应用于室外复杂场景的目标异常行为检测。 相似文献
11.
基于SVM(support vector machine)理论的分类算法,由于其完善的理论基础和良好的试验结果,目前已逐渐引起国内外研究者的关注.深入分析了SVM理论中SV(support vector,支持向量)集的特点,给出一种简单的SVM增量学习算法.在此基础上,进一步提出了一种基于遗忘因子α的SVM增量学习改进算法α-ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识,使得对样本进行有选择地遗忘成为可能.理论分析和实验结果表明,该算法能在保证分类精度的同时,有效地提高训练速度并降低存储空间的占用. 相似文献
12.
提出了一种改进的支持向量机增量学习算法。分析了新样本加入后,原样本和新样本中哪些样本可能转化为新支持向量。基于分析结论提出了一种改进的学习算法。该算法舍弃了对最终分类无用的样本,并保留了有用的样本。对标准数据集的实验结果表明,该算法在保证分类准确度的同时大大减少了训练时间。 相似文献
13.
针对经典支持向量机在增量学习中的不足,提出一种基于云模型的最接近支持向量机增量学习算法。该方法利用最接近支持向量机的快速学习能力生成初始分类超平面,并与k近邻法对全部训练集进行约简,在得到的较小规模的精简集上构建云模型分类器直接进行分类判断。该算法模型简单,不需迭代求解,时间复杂度较小,有较好的抗噪性,能较好地体现新增样本的分布规律。仿真实验表明,本算法能够保持较好的分类精度和推广能力,运算速度较快。 相似文献
14.
在如何从海量的数据中提取有用的信息上提出了一种新的SVM的增量学习算法.该算法基于KKT条件,通过研究支持向量分布特点,分析了新样本加入训练集后,支持向量集的变化情况,提出等势训练集的观点.能对训练数据进行有效的遗忘淘汰,使得学习对象的知识得到了积累.在理论分析和对旅游信息分类的应用结果表明,该算法能在保持分类精度的同时,有效得提高训练速度. 相似文献
15.
介绍了支持向量机,报告了支持向量机增量学习算法的研究现状,分析了支持向量集在加入新样本后支持向量和非支持向量的转化情况.针对淘汰机制效率不高的问题,提出了一种改进的SVM增量学习淘汰算法--二次淘汰算法.该算法经过两次有效的淘汰,对分类无用的样本进行舍弃,使得新的增量训练在淘汰后的有效数据集进行,而无需在复杂难处理的整个训练数据集中进行,从而显著减少了后继训练时间.理论分析和实验结果表明,该算法能在保证分类精度的同时有效地提高训练速度. 相似文献
16.
在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘法的增量式方法.该增量式方法通过对矩阵运算的恒等推导,把矩阵求逆问题转变成了除法运算,得到了简单的模型参数更新公式,从而获得了和ISVM同样的预测精度,且在处理高维数据时运行效率更高.在合成数据及图像和生物数据上的试验表明该增量式方法优于ISVM方法. 相似文献
17.
支持向量机已经成为处理大规模高维数据的一种有效方法。然而处理大规模数据需要的时间和空间代价很高,增量学习可以解决这个问题。该文分析了支持向量的性质和增量学习的过程,提出了一种新的增量学习算法,舍弃了对最终分类无用的样本,在保证测试精度的同时减少了训练时间。最后的数值实验和应用实例说明:算法是可行的、有效的。 相似文献
18.
基于图像块的分裂—合并法是一种高效的区域分割算法 ,提出了该算法的一种实现方案 ,重点讨论了灰度均匀性度量、灰度相似性度量、块合并的种子算法、小区域的处理等问题 .对比试验表明该方法效率高 ,效果好 相似文献
19.
针对在维护数据挖掘模型过程中须反复计算数据集、效率较低的问题,基于Ensembles学习思想,研究增量数据集的弱分类器生成方法,根据增量数据集分类器之间的相异度提出新的组合分类算法,分析组合分类器的出错率。实验结果表明,该分类方法是有效的。 相似文献