首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work contributes an engineered life cycle assessment (LCA) of hydrogen fuel cell passenger vehicles based on a real‐world driving cycle for semi‐urban driving conditions. A new customized LCA tool is developed for the comparison of conventional gasoline and hydrogen fuel cell vehicles (FCVs), which utilizes a dynamic vehicle simulation approach to calculate realistic, fundamental science based fuel economy data from actual drive cycles, vehicle specifications, road grade, engine performance, fuel cell degradation effects, and regenerative braking. The total greenhouse gas (GHG) emission and life cycle cost of the vehicles are compared for the case of hydrogen production by electrolysis in British Columbia, Canada. A 72% reduction in total GHG emission is obtained for switching from gasoline vehicles to FCVs. While fuel cell performance degradation causes 7% and 3% increases in lifetime fuel consumption and GHG emission, respectively, regenerative braking improves the fuel economy by 23% and reduces the total GHG emission by 10%. The cost assessment results indicate that the current FCV technology is approximately $2,100 more costly than the equivalent gasoline vehicle based on the total lifetime cost including purchase and fuel cost. However, prospective enhancements in fuel cell durability could potentially reduce the FCV lifetime cost below that of gasoline vehicles. Overall, the present results indicate that fuel cell vehicles are becoming both technologically and economically viable compared with incumbent vehicles, and provide a realistic option for deep reductions in emissions from transportation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An intelligent control system was developed using simple control methodologies for an H2-powered fuel cell scooter with the aid of a built-in microprocessor. This system increases the power input to drive a hydrogen fuel cell scooter, particularly during uphill conditions by running both the batteries and the fuel cell source in parallel. This system also improves the energy management of the scooter by recharging the battery using the fuel cell as well as automatic switching to the battery source when the hydrogen fuel cell is running low on hydrogen. This system was tested on a bench set simulating a 254 W hydrogen fuel cell stack equipped on a 200 W scooter. The test rig set-up depicts a practical scooter running on various load conditions. These results reflect the efficiencies of actual running conditions. The entire operation was embedded in a PICAXE-18 microcontroller for automatic switching between the batteries and the fuel cell source. An increase in the DC motor efficiency by 6 % has been shown. The uphill angle of the scooter has been increased by 19.3 %, which means the scooter would be able to travel on steeper hills. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.  相似文献   

4.
This paper performed a comparative analysis of organic Rankine cycle (ORC) using different working fluids, in order to recover waste heat from a solid oxide fuel cell‐gas turbine hybrid power cycle. Depending on operating parameters, criteria for the choice of the working fluid were identified. Results reveal that due to a significant temperature glide of the exhaust gas, the actual ORC cycle thermal efficiency strongly depends on the turbine inlet temperature, exhaust gas temperature, and fluid's critical point temperature. When exhaust gas temperature varies in the range of 500 K to 600 K, R123 is preferred among the nine dry typical organic fluids because of the highest and most stabilized mean thermal efficiency under wide operating conditions and its reasonable condensing pressure and turbine outlet specific volume, which in turn results in a feasible ORC cycle for practical concerns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   

6.

Geothermal energy is already in the form of heat, and from the thermodynamic point of view, work is more useful than heat because not all heat can be converted to work. Therefore, geothermal resources should be classified according to their exergy, which is a measure of their ability to do work. In recent years there has been a remarkable growth of interest in environmental issues—sustainability and improved management of development in harmony with the environment. Environmental impact assessment is one of the most widely used tools in environmental management. In this study, the environmental and exergetic aspects of geothermal energy, namely the rapid impact assessment matrix method, and, specific exergy index, were studied first. They were then applied to the Tuzla geothermal field in Canakkale and Balcova geothermal field in Izmir, Turkey, respectively. Finally, the results obtained are given and discussed.  相似文献   

7.
燃料电池用氢气燃料的制备和存储技术的研究现状   总被引:1,自引:0,他引:1  
质子交换膜燃料电池(PEMFC)进行反应的燃料是高纯度氢气,氢气的制备和存储是质子交换膜燃料电池能否应用和规模化应用的先决条件和关键技术。对燃料电池用氢气的制备、纯化、存储技术的研究现状进行了综合分析。  相似文献   

8.
This paper focuses on the experimental verification of an electrochemical model of 100 W portable direct hydrogen fed proton exchange membrane (PEM) fuel cell (FC). The model is built based on the relationship between the FC terminal voltage and the partial pressures of hydrogen and oxygen. The model is then used to predict the output voltage and study the transient response of a PEMFC when subjected to rapid changes in the load. To validate the model, the measurements obtained from a commercially available 100 W FC are compared against the model results. Three different scenarios are considered for testing the model and the actual FC. In the first two scenarios, a step change in the load is used. In the third scenario, the load is replaced by a laptop computer. Results show a close agreement between the voltage and the power responses of the proposed model and the actual PEM FC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper concerns a solid oxide fuel cell (SOFC) based integrated powering system for a medium-sized airplane and analyzes it thermodynamically for its performance assessment and evaluation. It further investigates the system in relation to aircraft operating conditions and provides the conceptual solutions for heating and cooling at various temperatures. The results of the energy and exergy analyses and performance assessments of the proposed integrated system are presented and discussed. The exergy and energy efficiencies of the main components are calculated and observed for the SOFCs with the maximum values of 84.54% and 80.31%, respectively. The present integrated system has overall energy and exergy efficiencies of 57.53% and 47.18%, respectively. Furthermore, it is found that an increase in the reforming temperature ratio can improve the hydrogen yield. However, when the system is operated at a temperature higher than 800°C, the hydrogen yield decreases since a reverse water gas shift reaction is more pronounced. Moreover, the SOFC shows the best performance at 800°C with a maximum power density of 1.23 W/cm2.  相似文献   

10.
建立了质子交换膜燃料电池(PEMFC)堆的热力学分析模型,研究了运行温度、气体分压和阳极流量等工作参数对燃料电池堆能量效率和火用效率的影响。结果表明:对气体加压,能提高热力学能效率和火用效率;温度升高时,系统性能无明显变化;阳极流量增加时,系统的热力学能效率和火用效率有所降低。  相似文献   

11.
In this paper, we develop and experimentally investigate a novel hybrid ammonia fuel cell and thermal energy storage system. A molten alkaline salt is utilized for storing thermal energy as well as operating an alkaline electrolyte‐based direct ammonia fuel cell. The specific thermal energy storage capacity of the hybrid system is found to be 133 kJ kg?1 at a temperature of 320°C. Furthermore, the maximum power densities are found to be 2.1±0.1 W m?2 to 2.3±0.1 W m?2 for operating temperatures varying between 220°C and 320°C. The energy efficiency is evaluated as 20.6±0.6%, and the exergy efficiency is determined to be 23.3±0.7% at the peak power density.  相似文献   

12.
A life cycle assessment has been undertaken in order to determine the environmental feasibility of hydrogen as an automotive fuel in Western Australia. The criterion for environmental feasibility has been defined as having life cycle impacts equal to or lower than those of petrol. Two hydrogen production methods have been analysed. The first is steam methane reforming (SMR), which uses natural gas (methane) as a feedstock. The second method analysed is alkaline electrolysis (AE), a mature technology that uses water as a feedstock. The life cycle emissions and impacts were assessed per kilometre of vehicle travel.  相似文献   

13.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

15.
Since transportation is one of the major contributors of global warming and air pollution, developing low-emission vehicles can significantly result in a more sustainable environment. In this research study, four different types of personal vehicles, including gasoline-fueled, CNG-fueled, electric, and hydrogen fuel cell vehicles (FCV) vehicles, are considered to analyze the role of personal vehicles in transportation. In the first step, based on common vehicles, all selected vehicles are simulated in the Simcenter Amesim Software. The primary aim of the modeling is to investigate the performance of each vehicle under the NYC driving conditions. The results indicate that under the selected driving cycle, CNG and gasoline-fueled vehicles consume 165.44g and 174.07g of CNG and gasoline in each driving cycle respectively, while the electric and hydrogen fuel cell vehicles consume 1.51% of the battery pack capacity and 26.47 g of hydrogen per driving cycle, respectively. In the next step, to study the vehicles' life cycle assessments (LCA), the GREET software is implemented to investigate the overall performance of the vehicles from the cradle to the grave. Based on the LCA results, CO2, CO, NOx, GHG, and SOx pollution are examined for all selected vehicles, in which the FCV indicates the best behavior. Finally, the emitted CO2 for FCV in comparison with gasoline-fueled, CNG-fueled, and EV vehicles were 75.87%, 73.42%, and 35.5% lower, respectively.  相似文献   

16.
Emissions of multiple hydrogen production pathways from fossil sources were evaluated and compared with that of fossil fuel production pathways in China by using the life cycle assessment method. The considered hydrogen pathways are gasoline reforming, diesel reforming, natural gas reforming, soybean‐derived biodiesel (s‐biodiesel) reforming, and waste cooking oil‐derived biodiesel reforming. Moreover, emissions and energy consumption of fuel cell vehicles utilizing hydrogen from different fossil sources were presented and compared with those of the electric vehicle, the internal combustion engine vehicle, and the compression ignition engine vehicle. The results indicate both fuel cell vehicles and the electric vehicle have less greenhouse gas emissions and energy consumption compared with the traditional vehicle technologies in China. Based on an overall performance comparison of five different fuel cell vehicles and the electric vehicle in China, fuel cell vehicles operating on hydrogen produced from natural gas and waste cooking oil‐derived biodiesel show the best performance, whereas the electric vehicle has the worse performance than all the fuel cell vehicles because of very high share of coal in the electricity mix of China. The emissions of electric vehicle in China will be in the same level with that of natural gas fuel cell vehicle if the share of coal decreases to around 40% and the share of renewable energy increases to around 20% in the electricity mix of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This article is a study of the feasibility of electrochemically separating hydrogen from hydrogen/ethylene mixtures. Experimental results are presented for the performance of the anode of a proton exchange membrane (PEM) fuel cell that is used to separate hydrogen/ethylene mixtures. Experiments were performed using a single cell PEM fuel cell. The experimental results show that, to a large extent, the ethylene reacts with the hydrogen in the anode chamber to form ethane. In spite of this reaction, it is still possible to separate a significant portion of the hydrogen and options for improving the separation efficiency are discussed. A zero-dimensional mathematical model of the hydrogen separation and hydrogenation process has been developed and it has been shown that this model gives generally good agreement with the experimental results.  相似文献   

18.
以国际标准化组织的生命周期评价标准为依据,确定了车用燃料生命周期评估的系统边界和评价指标,给出了模型主要的计算公式,并进行了国外车用燃料全生命周期的能源消耗和排放评价。  相似文献   

19.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Increasing environmental problems, limited fossil resources and the geopolitical dependence on crude oil are enormous challenges for our societies. According to energy experts from all over the world, fuel cell and hydrogen energy technologies will play an important role in the portfolio for a future energy economy. This is particularly true for the transport sector which is marked today by an extreme dependency on oil. Hydrogen needs to be produced cost-effectively and with zero or near-zero CO2 emissions. Fuel cells, with their high electrical efficiencies and clean exhaust energy conversion, have the potential to produce excellent solutions to the ecological and economic problems provided that their development is pursued in a determined way and that their market launch is prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号