首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
水下压缩空气储能是一种能够利用水下静压储存压缩空气的技术,该技术与海上风电相结合,可以大规模储存具有波动性、间歇性的海上风电,从而使电力输出满足用电负荷需求.因此,建立了一个海上风力发电与水下压缩空气储能系统相结合的物理模型.首先,在充-储-释理想运行模式仿真下,确定了在储气压力约束下的系统最优额定工况;然后,为了扩大...  相似文献   

2.
压缩空气储能(compressed air energy storage, CAES)是实现电网削峰填谷、促进风电高效消纳的手段之一。然而,压缩空气储能效率在较大程度上取决于运行工况,其变工况特性直接影响风储联合系统的安全高效运行。以最大化风储系统运行收益为目标,建立了考虑压缩空气储能变工况特性的风储系统运行优化模型。该模型对压缩机、透平在变工况运行时的动态效率进行了准确刻画,并采用分段线性化方法将变工况特性纳入混合整数线性规划算法。算例结果表明,优化策略与压缩空气储能的变工况特性有直接关系;考虑运行约束和动态效率能更准确反映缩空气储能的实际运行状态,可为风储系统的运行决策提供依据。  相似文献   

3.
大规模清洁储能技术之一的先进绝热压缩空气储能(AA-CAES)具备热电联供、联储的能力,可作为能量枢纽接入综合能源系统,以提高系统运行的灵活性,促进新能源消纳。提出了一种可直观反映AA-CAES功率约束和储能状态约束的运行可行域刻画方法,为理解AA-CAES的热电耦合关系,分析热电联供模式的运行特点,评估系统的运行灵活性、供能能力和调节裕量提供了一种可视化工具。在此基础上,研究了运行可行域的形状和特点,分析了考虑供热比变化和计及宽工况影响的运行可行域处理方法,并探讨了运行可行域作为分析工具在实时调度中的应用。以某区域综合能源系统为例,验证了所提运行可行域分析方法的有效性和实用性。  相似文献   

4.
为加强先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)与综合能源系统(integrated energy systems,IES)的多能互补协同,提高系统运行效率,文中提出了一种含AA-CAES能源站的电-热综合能源系统优化运行方法。首先,构建了含AA-CAES能源站的IES基本调度架构;其次,详细分析了AA-CAES装置在压缩和膨胀工况下的储热、换热及供热等特性,建立了AA-CAES电热联供联储运行模型;接着,基于热网管道传热延迟和损耗等动态特性,建立了考虑供热网储热惯性的热网方程;在此基础上,考虑了用户侧可调度资源,提出了计及综合需求响应的含AA-CAES能源站的IES日前优化运行模型;最后,在修改的IEEE33节点配电网和巴厘岛32节点区域供热网进行算例分析。仿真结果表明,所提方法可有效降低IES运行成本,提高IES可再生能源消纳能力。  相似文献   

5.
先进绝热压缩空气储能(AA-CAES)是一种大容量储能技术,其成本低、无需燃料,且具有冷-热-电联储联供的能力,在综合能源系统(IES)中能发挥出其独特优势,有助于进一步提升IES的能量利用率。根据IES的运行情况,对AA-CAES电站进行经济性分析,能切实反映AA-CAES电站应用于IES后所带来的经济效益,对AA-CAES技术的推广和应用具有重要意义。考虑AA-CAES电站、电转气装置、蓄电池电站等辅助设备参与IES运行的情况,建立了其全寿命周期经济评估模型。为了反映IES的运行情况与成本,该文考虑其主要设备的协调互动,建立了大规模IES的优化调度模型。基于上述模型,得到了含AA-CAES电站、蓄电池或电转气装置等不同辅助设备时IES的优化运行结果。最后结合各辅助设备的全寿命周期成本与IES运行成本,对比分析了AA-CAES电站与其他辅助设备在IES中的经济性表现。  相似文献   

6.
先进绝热压缩空气储能(AA-CAES)是一种可实现大容量和长时间电能存储的电力储能系统,其储能的过程中会伴随产生额外的多种能流,若将运行中产生的额外能流收集起来,AACAES可作为微型综合能源系统进行使用。该文通过基于能源集线器(EH)构建通用能量交换分析模型,针对AA-CAES内部组件压缩机、透平机、换热器等部件进行模块化矩阵建模,分析其热力学特性和能流产生效率,研究AA-CAES的多能流联供调度策略。以最大化经济性运行为目标,提出了一种基于能源集线器矩阵化建模的AA-CAES多能流优化调度模型,并采用典型的压缩空气储能系统设备数据,进行仿真验证。仿真结果表明,AA-CAES作为微型综合能源系统具有较好的经济性,并且可以实现日常的热电联供,减少或降低其他供热系统的能耗,提高区域的能量利用效率。  相似文献   

7.
先进绝热压缩空气储能(AA-CAES)具有规模大、成本低、无需燃料、效率高等优点,是压缩空气储能(CAES)技术领域的主流发展趋势之一。本文将AA-CAES电站作为重要的调度资源,与常规机组、风电共同参与电力系统实时调度。首先,基于AA-CAES电站的热力学特性,建立能够反映AA-CAES电站变工况条件下运行特性的储能电站运行约束模型。然后,考虑AACAES电站在自动发电控制(AGC)阶段的功率调节不确定性,建立AA-CAES电站AGC约束模型。在此基础上,提出含AA-CAES电站的电力系统实时调度模型,该模型考虑了系统AGC容量需求约束、AGC调节速率需求约束和AGC调节任务量需求约束。最后,基于修改版IEEE30节点系统进行算例仿真,仿真结果证明了调度模型的有效性。  相似文献   

8.
冯庭勇    钟晶亮  文贤馗  杨大慧    邓彤天 《热力发电》2022,51(5):136-141
为实现先进绝热压缩空气储能(AA-CAES)系统在宽负荷段参与AGC调频,且调节速率不超过《广东调频辅助服务市场交易规则》规定(避免产生考核电量),提出一种多级分段设置PID控制器参数参与机组自动发电控制(AGC)调频的控制策略。通过APROS仿真平台分别对10 MW AA-CAES机组采用单套与3套PID控制器响应AGC控制指令进行仿真。结果表明:AA-CAES发电系统机组采用1套PID控制器在宽负荷段响应AGC控制指令,调频性能指标K1大于5,给储能电站增加考核电量而造成经济损失;机组采用3套不同参数PID控制器能够优化调频性能指标,使调频性能指标K1在要求范围内,从而避免产生考核电量,有效提高AA-CAES发电系统参与辅助调频服务的经济效益。  相似文献   

9.
风电的随机性会使得电力系统受到影响,先进绝热压缩空气储能(AA-CAES)技术具有大容量、低成本、高效率的特性,可作为平衡风力发电随机性的储能系统。为此,首先,考虑风力发电的随机性与AA-CAES电站的运行特性,构建AA-CAES电站运行与风力发电系统发电功率模型,采用蒙特卡洛仿真法对风力发电机的运行情况进行仿真;然后,将用户作为市场元素,计算可中断供电负荷的赔偿费用,并以系统综合成本与断电赔偿费用之和的总费用最小为目标,采用动态规划法优化AA-CAES电站的压缩/膨胀功率,建立含AACAES的风力发电系统的成本/可靠性评估模型;最后,通过仿真验证所提规划方法并分析AA-CAES电站容量对系统经济性及供电可靠性产生的影响。结果表明,当系统容量规模增加时,存在一个最优容量配置使得系统的总费用最低。  相似文献   

10.
先进绝热压缩空气储能(AA-CAES)技术不但具有环境友好、成本低、容量大等优点,还拥有热电联储/联供的独特优势,并且能够与外接热源耦合运行。充分考虑AA-CAES电站的热电联储/联供特性,将光热集热模块作为AA-CAES系统的外部扩展热源,提出了光热集热模块耦合AA-CAES系统的优化规划模型。该模型除了计及影响光热集热模块各项实际运行效率的约束外,还综合考虑了AA-CAES电站的规划约束、运行约束以及AA-CAES电站备用出力约束等,并采用大M法对模型中的非线性项进行等价转换,将优化规划模型转化为能被常规商用优化求解器高效求解的混合整数线性规划模型。基于某地区的典型日数据和改进的IEEE 30节点系统进行算例仿真,仿真结果验证了所提模型的有效性。  相似文献   

11.
基于压缩空气储能的风电场功率调节及效益分析   总被引:1,自引:0,他引:1       下载免费PDF全文
风能的间歇性和波动性给风力发电大规模并网应用带来了不利影响,利用储能技术能够很好地解决该问题,然而昂贵的成本一直是制约储能技术应用的瓶颈.文中提出了基于压缩空气储能(CAES)的风电场功率调节系统的额定功率以及容量的设计,在满足风电并网标准的前提下尽可能减小储能装置的规模,并利用仿真加以分析验证.建立了CAES装置效益...  相似文献   

12.
压缩空气储能是一种充放电循环次数多、使用寿命长、可大规模储存电能的清洁环保的物理储能技术,适合于电网级大规模应用场合。文中分析了大规模压缩空气储能系统常规定速发电方式特点,提出了基于全控器件励磁的定速恒频同步储能机组控制策略,以获得更强的励磁能力和抑制系统振荡的能力,实现提升储能机组辅助服务能力。为了提高综合能效,提出了基于变速恒频双馈发电机组和变速变频直驱发电机组的大规模压缩空气储能变速发电方案构想,并分析了其典型运行控制策略,该变速发电方案具有提升储能机组控制功能及辅助服务能力的潜力。最后,分析了大规模压缩空气储能发电运行控制面临的挑战。  相似文献   

13.
微型压缩空气储能是一种新型的储能技术,可以与飞轮等组成混合储能系统。文中介绍了基于微型压缩空气储能的混合储能系统的结构及工作原理,根据现有设备的实验结果提出了压缩空气储能原动部分的数学模型,包括压缩空气压力、温度、阀门、透平等环节,并通过拟合的方法进行参数辨识。最后,搭建了混合储能系统的仿真算例,并通过仿真与实验数据的对比验证了模型的适用性和有效性。  相似文献   

14.
压缩空气储能是现阶段快速发展的一种储能技术,能够实现能量的储存和释放.在系统运行过程中,为了避免热量损耗,提出一种回收利用系统排气和换热工质余热的方法,在原余热回收系统基础上添加低膨胀比膨胀机,系统排气通过换热器吸收工质余热,进入膨胀机做功,增加膨胀机组输出功率并提升系统效率.利用Aspen Plus软件建立稳态工况下...  相似文献   

15.
适用于风电功率调控的复合储能系统及其控制策略   总被引:3,自引:0,他引:3  
复合储能系统能够发挥不同储能方式的优势,有效提高储能系统的综合性能。针对并网风电功率调控目标,考虑不同储能方式的特性,构建一种基于蓄电池和飞轮储能的复合储能系统结构和数学模型,并重点研究其控制策略。通过合理设计中央管理层的控制策略,可以保障复合储能系统安全稳定运行,并对其吞吐功率进行优化,从而能够提高风电功率的调控效果;对于储能单元控制器,提出了蓄电池的功率和能量两种激活模式,并结合多模态电流滞环控制方法,实现功率在复合储能系统的各储能单元间合理流动。仿真结果表明,所提复合储能系统及其控制策略是可行有效的。  相似文献   

16.
为了提高压缩空气储能(CAES)系统的效率,提出了新型变压比压缩空气储能系统。该系统基于定容储气装置及传统定压比压缩方式的特性,通过阀门调节来改变储能过程中压缩级组的串并联运行方式实现。通过分析不同压缩级数下可行的变压比运行方式,建立变压比压缩空气储能系统的仿真模型,从仿真得出的变压比储能系统的储能时间、压缩功耗和系统的充放电效率等方面,与传统的定压比压缩空气储能系统进行比较。结果表明,变压比压缩空气储能系统不仅减少了储能过程中压缩机组的功耗、缩短了储能时间,而且提高了整个系统的充放电效率。  相似文献   

17.
平抑长短期风电功率波动的风储协调运行方法   总被引:2,自引:0,他引:2  
提出了一种基于模型预测控制(MPC)和低通滤波(LPF)原理的实时平抑长短期风电功率波动的风储协调运行方法。首先,该方法利用风电场发电功率预测曲线,综合考虑优化时域内实际并网功率的平滑效果、储能荷电状态(SOC)、储能出力以及相关约束,通过每15min的滚动计算来实现对储能系统的优化控制。然后,建立了MPC与LPF两种原理的联系,推导了对常规LPF原理进行补偿的计算公式,使得储能SOC变化能够跟踪MPC设定的优化轨迹。算例分析表明,新方法既能够有效平抑1min和10min的短期风电功率波动,又能在15min~4h的时间尺度上,有效控制储能SOC的变化范围。  相似文献   

18.
文章介绍了一种新型的混合储能系统实现电能的存储与转化。该混合储能系统以微型压缩气体储能系统实现电能量存储,配合超级电容系统实现功率等级要求。压缩气体超级电容混合储能系统结合两种储能方式在高能量密度和高功率密度上的优势,既满足系统充放电的响应速度,也满足电能量较高效率转换的要求。超级电容系统作为电能量的缓冲调节系统,它的优化设计很大程度决定整个混合储能系统的效率与成本。对超级电容系统的优化设计进行了不同方面的考虑,得出了超容系统在混合储能系统中优化设计的方案,并进行了仿真试验,验证了该方案的可行性。  相似文献   

19.
超导储能蓄电池混合储能在风力发电中的应用   总被引:2,自引:1,他引:1       下载免费PDF全文
风力发电输出功率的波动性导致其直接并网会对电网带来不良影响,需要电力储能装置来提高并网性能,而常用的单一电池储能由于受到充放电次数的限制而易损坏。在建立用于平滑风电功率波动的超导储能和电池储能的混合储能模型基础上,设计超导储能用于平抑高频尖峰功率,电池储能用于平抑低频波动功率,并给出了两种储能装置的功率和容量确定方法。算例的仿真结果表明该方法同单一电池储能相比,可以有效地平抑风场并网的功率波动并减小电池的功率等级,减少电池的充放电次数和放电深度,从而延长了电池使用寿命。  相似文献   

20.
实现压气式蓄能发电提高联合循环电站输出功率   总被引:1,自引:0,他引:1  
孔旭 《电力设备》2006,7(6):51-53
介绍了联合循环发电设备实现压气式蓄能发电的结构特点(包括压气蓄能发电系统、联合循环压气蓄能发电系统和高压双机联合循环压气蓄能发电系统)和贮气空调类型;分析了压气式蓄能发电的经济效益。介绍了当前国际上对此类蓄能发电开发利用的情况。对我国开发压气式蓄能发电提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号