首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) of the n‐3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene‐interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non‐volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi‐refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products generated at high deodorization temperatures, with 19.5% oligomers being formed in oil deodorized at 250 °C. A significant amount of CFAM was produced during deodorization at temperatures above or equal to 220 °C. In fact, 23.9 and 66.3 mg/g of C20 and C22 CFAM were found in samples deodorized at 220 and 250 °C, respectively. Only minor changes were observed in the EPA and DHA trans isomer content and composition after deodorization at 180 °C. At this temperature, the formation of polar compounds and CFAM was also low. However, the oil deodorized at 220 and 250 °C contained 4.2% and 7.6% geometrical isomers, respectively. Even after a deodorization at 250 °C, the majority of geometrical isomers were mono‐ and di‐trans. These results indicate that deodorization of fish oils should be conducted at a maximal temperature of 180 °C. This temperature seems to be lower than the activation energy required for polymerization (intra and inter) and geometrical isomerization.  相似文献   

2.
The effect of deodorization temperature (between 220 and 270 °C) on tocopherol retention in physically refined rapeseed oil during deodorization in a plant‐scale semi‐continuous tray‐type deodorizer was investigated. Among the three tocopherol homologues detected in the samples of rapeseed oils under study, the α‐ and γ‐tocopherol homologues, with the latter predominating, constituted the most abundant part of total tocopherols, accompanied by a small amount of δ‐tocopherol. The retention values calculated for both total and individual tocopherols decreased linearly with increasing deodorization temperature. The retention of total tocopherols decreased considerably from 91.5% at 220 °C to 54.7% at 270 °C, approaching a value of about 80% in the main area of concern between 230 and 240 °C. The retention values of individual tocopherols as well as the slopes resulting from the equations relating these retentions to deodorization temperature were observed to decrease in the same order as their molecular weights. Since the retention of α‐tocopherol is slightly higher than that of γ‐tocopherol, the average proportion of α‐tocopherol during deodorization slightly increases at the expense of γ‐tocopherol.  相似文献   

3.
Among the most important metabolic compounds there are some which are not synthesized by human and animal organisms and have to be supplied in appropriate quantities in due time. Vitamin E and the essential unsaturated fatty acids have crucial physiological significance, and their greatest quantities occur in plant oils. During refining, apart from unnecessary substances, nutritionally advantageous compounds are also being eliminated. In the present paper changes of tocochromanols taking place during refining of rapeseed oil obtained from seeds of two subsequent crops were investigated. It was observed that losses of tocopherols exceeded 30%, two thirds of which resulted from distilling off during deodorization. The ratio of vitamin E to essential unsaturated fatty acids expressed as the Harris coefficient decreased in the refined oil obtained from seeds of two subsequent crops by about 28%.  相似文献   

4.
The cis‐trans isomerizations undergone by linoleic acid during industrial deodorization and/or physical refining of edible fats were studied in an experimental discontinuous pilot plant of 250 kg using nitrogen as stripping gas in place of steam. For each oil, the expression of the analytical results has been made as molar fraction, which is kinetically equivalent to making an abstraction from the other components in the reaction bulk and assumes they do not take part in the isomerization. The kinetic constants for the formation of the acids C18:2(9c,12t), C18:2(9t,12c) and C18:2(9t,12t) were determined. The equations and values obtained justify that the reaction orders studied are zero (or can be considered zero) for the time taken in an industrial deodorization and/or physical refining of edible fats. The analytical method used is appropriate for direct application of the results in industry.  相似文献   

5.
介绍了直链不饱和脂肪酸制备支链脂肪酸的研究现状,综述了脂肪酸异构机理,异构催化剂如白土催化剂、沸石催化剂,催化剂的筛选原则,着重讨论了各种常用沸石对于脂肪酸异构反应不同的影响以及现有的合成工艺。分析了脂肪酸的分离技术,包括精馏分离法、溶剂结晶法、尿素包结法、超临界流体萃取法的优缺点,指出沸石催化生产支链饱和脂肪酸的关键问题是需要解决混合脂肪酸作为原料反应的选择性问题,其相关的基础性工作,如更明确的反应机理和催化剂结构参数对反应的影响,仍是将来的研究方向。  相似文献   

6.
In the present study, neutral oil loss (distillative and mechanical carry-over) during physical refining of coconut oil was quantified. Neutral oil loss seems to depend on both the crude oil quality and the process conditions during deodorization. The distillation of volatile glyceridic components (monoand diglycerides), originally present in the crude oil, was confirmed as the major cause for the neutral oil loss. The amount of these volatile components in crude coconut oils cannot be derived as such from the initial free fatty acid content. A lower deodorization pressure with less sparge steam resulted in a larger neutral oil loss than a higher pressure with more steam. A “deodorizability” test on a laboratory scale under standardized conditions (temperature=230°C, pressure=3 mbar, time=60 min, sparge steam=1%), to evaluate crude oil quality and to obtain a more accurate prediction of the expected neutral oil loss and free fatty acid content in the fatty acid distillate, is described.  相似文献   

7.
Acid‐catalysed methylation is frequently applied for the preparation of fatty acid methyl esters used for gas chromatographic analysis of fatty acids. A series of artefacts were observed in hydrochloric acid‐catalysed direct methylation of herring (Clupea harengus L.) muscle. The artefacts were identified as trans isomers of eicosapentaenoic and docosahexaenoic acid, and their levels increased with reaction time. The isomers were not found after methylation of a lipid extract of the herring muscle, even after extreme reaction times. In general, the trans isomers are only observed after methylation of certain marine tissues, indicating catalytic activity in these samples. Based on these results, it is recommended that direct methylation procedures are thoroughly validated with each matrix type analysed, and that reaction times should not be longer than necessary to complete the methylation.  相似文献   

8.
The polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA, 20∶5n−3) and docosahexaenoic acid (DHA, 22∶6n−3), which have several pharmaceutical properties, have been purified from cod liver oil. The process consisted of four main steps: (i) saponification of the oil, (ii) use of urea inclusion adducts method to obtain PUFA, (iii) PUFA methylation, and (iv) argentation silica gel column chromatography of the methylated PUFA. Argentation silica gel chromatography yielded highly pure DHA in the process (100% purity, 64% yiild). For EPA, the recovery in the combined process was 29.6%, and the final purity was 90.6%, owing to the simultaneous elution of other polyunsaturated fatty esters. The recovery in the urea inclusion method was strongly enhanced by application of orbital agitation during the crystallization process, in which EPA yield increased from 60–70% without agitation to 90–97% at 800 rpm; stearidonic acid (18∶4n−3) yield ranged from 60–75% without agitation to 87–95% at 800 rpm, and DHA yield varied from 53–73% without agitation to 85–99% at 800 rpm  相似文献   

9.
The aim of the present study was to systematically investigate the possibilities of stabilizing a bulk oil rich in long‐chain polyunsaturated fatty acids under ambient conditions. Combinations of different antioxidants (α‐, γ‐ and/or δ‐tocopherol, rosmarinic acid and rosemary extract rich in carnosic acid) as well as lecithin and citric acid were systematically investigated. Efficient stabilization was achieved by choosing a combination of tocopherols rich in γ‐ or δ‐tocopherol and low in α‐tocopherol, by including tocopherol‐sparing synergists like ascorbyl palmitate and carnosic acid from rosemary extract and metal‐chelating agents. For carnosic acid, a concentration of 400 mg/kg oil provides sufficient protection; the concentration of the metal chelator should be adapted to the concentration of metal ions present in the oil. As an alternative ingredient with metal‐chelating and tocopherol‐sparing activity, lecithin may be included in the formulation, but its poor solubility in bulk oils limits its use.  相似文献   

10.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) now have a proven role in human health and nutrition, including the n‐3 forms normally found in fish oils. Unfortunately, global fish stocks are now more than ever subject to over‐fishing and environmental pollution, indicating the need for an alternative source of fish oils. Recent efforts have focussed on the production of LC‐PUFA in transgenic plants to provide a sustainable and clean source of fish oils. The current progress in this area is considered, as well as the bottlenecks that remain to be overcome.  相似文献   

11.
The effects of deodorization time and temperature on the physical and chemical properties of cottonseed oil were investigated. Higher temperatures and longer times lead to increases in free fatty acids, peroxide value, viscosity and refractive index while iodine value, unsaponifiable matter and induction period decreased.  相似文献   

12.
Laboratory-scale treatments of canola oils similar to deodorization were carried out by applying the following conditions: reduced pressure with nitrogen or steam stripping at different temperatures ranging from 210 to 270°C for 2–65 h. The formation of the group of trans linolenic acid isomers follows a first-order reaction and the kinetic constant varies according to the Arrhenius’ law. Similar results were observed for the trans isomerization of linoleic acid. Based on these experiments, a mathematical model was developed to describe the isomerization reaction steps occurring in linoleic and linolenic acids during deodorization. The calculated degrees of isomerization are independent of the composition of the oil but related to both time and temperature of deodorization. The degree of isomerization of linolenic acid is unaffected by the decrease of this acid content observed during the deodorization. Deodorization at about 220–230°C appears to be a critical limit beyond which the linolenic isomerization increases very strongly. The newly established model can be a tool for manufacturers to reduce the total trans isomer content of refined oils, and was applied to produce a special selectively isomerized oil for a European Nutritional Project.  相似文献   

13.
We studied the effect of four rapeseed oils with different fatty acid profiles on parameters implicated in the pathogenesis of atherosclerosis in humans in a model experiment with hamsters. The hamsters were divided into seven groups and fed a semi‐synthetic, cholesterol‐enriched diet (5 g/kg diet) containing 15% of the fat in question for a period of six weeks. The following rapeseed oils were used: (1) conventional rapeseed oil (6% saturated fatty acids [SFA], 64% monounsaturated fatty acids [MUFA], 18% linoleic acid [LA], 9% α‐linolenic acid [ALA]), (2) linoleic acid‐rich rapeseed oil (6% SFA, 61% MUFA, 28% LA, 2% ALA), (3) oleic acid‐rich rapeseed oil (6% SFA, 74% MUFA, 11% LA, 5% ALA), (4) myristic acid‐rich rapeseed oil (11% myristic acid, 35% SFA, 44% MUFA, 14% LA, 5% ALA). Sunflower oil, olive oil and lard were used as control fats. The concentrations of the lipids in the plasma, in the lipoprotein fractions and in the liver, the fatty acid composition of various tissues, the tocopherol status and the susceptibility of low‐density lipoproteins (LDL) to in vitro‐oxidation were determined. The concentrations of total cholesterol found in the plasma and in the LDL fraction and the ratios of LDL to HDL were similar after feeding the four different types of rapeseed oil, sunflower oil and olive oil. Lard produced the highest concentrations of cholesterol in plasma and the LDL fraction and the highest ratio of LDL to HDL. Feeding conventional, oleic acid‐ and myristic acid‐rich rapeseed oils resulted in markedly lower ratios of arachidonic to eicosapentaenoic acid in the lipids of the liver and the erythrocytes. This is considered beneficial for the formation of eicosanoids. The lag‐time before the onset of peroxidation of the LDL lipids, induced by copper ions, was not statistically significant between the seven hamster groups suggesting that the susceptibility of LDL to lipid peroxidation was similar after feeding all types of fat. Considering all parameters obtained in the used hamster model it is obvious that all four rapeseed oils are at least as favourable as olive oil or sunflower oil.  相似文献   

14.
15.
There is growing scientific evidence that consumption of n‐3 very long‐chain polyunsaturated fatty acids (n‐3 VLC‐PUFA) helps in brain and eye development, and protects against a range of common degenerative diseases. This has provided the impetus to the scientists to develop new and renewable sources for these important fatty acids so that the food industry is able to produce and market products fortified with n‐3 VLC‐PUFA. The bioactive efficacy and stability of food products containing n‐3 VLC‐PUFA may be determined not only by the amount of n‐3 VLC‐PUFA present but also by the positional distribution of these acids within the triacylglycerol (TAG) molecules (regiopurity). Studies of the effects of positional distribution on the functionality of n‐3 VLC‐PUFA containing oils have been hampered by a general lack of pure TAG regioisomers for experimentation. This paper reviews methods that have been used for the synthesis of TAG regioisomers containing n‐3 VLC‐PUFA, with special reference to those in which one n‐3 VLC‐PUFA occurs in combination with two long‐chain saturated acids.  相似文献   

16.
Changes in the contents of waxes and fatty alcohols during deodorization/physical refining of bleached olive oil were studied. Experiments were carried out with 1.85% acidity oil, which was physically refined in a discontinuous deodorizer of 250-kg maximum capacity using nitrogen as stripping gas instead of steam. The variables studied were load and temperature of oil in the deodorizer as well as N2 flow. Analyses of waxes and alcohols were carried out at different operation times. The maximum content of wax was always observed when the oil reached the deodorization temperature. The variation in the wax content depended on temperature and N2 flow. Wax decomposition started and continued during the operating time, and a progressive decrease, which was pronounced between 3 and 4 h, was observed. Small changes in waxes were observed between 4 and 5 h. Total content of fatty alcohols diminished throughout the operating time, and changes did not depend on the variables studied.  相似文献   

17.
Enrichment ofcis-5 polyunsaturated fatty acids [20:3(5c,11c,14c), 4.3% and 20:4(5c,11c,14c,17c), 11.3%] fromBiota orientalis seed oil was carried out by lipase-catalyzed selective esterification and hydrolysis reactions. Lipases fromRhizomucor miehei (Lipozyme),Candida cylindracea and porcine pancreas were used. Lipozyme-catalyzed esterification ofBiota fatty acids withn-butanol inn-hexane allowed 20:3 and 20:4 (as fatty acids) to be enriched to a maximum level of 52.9%, and in the presence ofC. cylindracea lipase 61.5% enrichment was achieved. Esterification with pancreatic lipase was poor with low levels of enrichment of 20:3 and 20:4 (22%). A multigram scale esterification of the free fatty acids fromBiota seed oil by repeated treatment of the isolated fatty acid fraction withn-butanol inn-hexane in the presence ofC. cylindracea lipase furnished an enrichment yield of 72.5% of a mixture of 20:3 and 20:4 fatty acids. Urea fractionation of the free fatty acids ofBiota oil gave an initial enriched fraction of 20:3 (9.5%) and 20:4 (25.2%) which, upon treatment withC. cylindracea lipase inn-butanol andn-hexane, gave an enriched fraction of 85.3% of 20:3 and 20:4 fatty acids. Partial hydrolysis of the triglycerides ofBiota oil byC. cylindracea lipase in potassium phosphate buffer at 25°C resulted in a 2.8-fold enrichment ofcis-5 polyunsaturated fatty acids (40.8% of 20:3 and 20:4) as contained in the unhydrolyzed acylglycerol fractions.  相似文献   

18.
Two sets of alkyd resins of variable oil lengths with the required properties for offset printing ink formulations, modified by sunflower and rapeseed oil, were synthetized according to the “monoglyceride” process. The influence of the acyl composition of the modifying vegetable oil and of the oil content on alkyds’ properties was determined by detailed chemical and rheological characterization. Molecular structure, size, and molecule size distribution appeared to be linked to these two factors. A comparative study with two usual linseed oil-modified alkyds led to determination of the more appropriate alkyds for applications in offset varnishes.  相似文献   

19.
Meadowfoam fatty acids (83% monoenoic fatty acid), reacted with 0.01–0.1 mole equivalents of perchloric acid, gave 33–71% yield of estolide, an oligomeric 2° ester, resulting from self condensation. Equimolar amounts of perchloric acid to fatty acid failed to produce estolide but converted the fatty acids to a mixture of lactones, mainly γ-eicosanolactone. Temperature plays a critical role; higher temperatures (75–100°C), at the same acid concentration, provide lactones while lower temperatures (20–65°C) yield estolides. Lower acid levels (<0.1 mole equivalents) gave the best yields (≈70%) at 65°C. The estolide and monomer were characterized by nuclear magnetic resonance, infrared high-pressure liquid chromatography, gas chromatography, gas chromatography/mass spectrometry. The estolide is a mixture of oligomers with an average distribution near 1.65 ester units. The ester linkages are located mainly at the original double bond positions but have some positional isomerization to adjacent sites in accord with carbocation migration along the alkyl chain. The residual double bond of the estolide was extensively isomerized fromcis totrans and positionally along the chain. The distilled monomer is similar in structure to the unsaturated portion of the estolide with geometrical and positional double bond isomerization. In addition, a significant amount of cyclization of the fatty acids to lactone (≈30%) had occurred.  相似文献   

20.
Heating of borage oil, either under vacuum as a model or during steam-vacuum deodorization, produces artifacts that are geometrical isomers of γ-linolenic acid (cis-6,cis-9,cis-12 18∶3 acid). In a first approach, we have studied the behavior of these fatty acids in the form of either methyl or isopropyl esters on two capillary columns (CP-Sil 88 and DB-Wax). From this study, it appears that the DB-Wax capillary column is the best suited analytical tool to study in some detail γ-linolenic acid geometrical isomers. In a second approach, the structure of these isomers was formally established by combining several analytical techniques: Argentation thin-layer chromatography, comparison of the equivalent chainlengths with those of isomers present in NO2-isomerized borage oil on two different capillary columns, partial hydrazine reduction, oxidative ozonolysis, gas chromatography coupled with mass spectrometry and gas chromatography coupled with Fourier transform infrared spectroscopy. The two main isomers that accumulate upon heat treatments are thetrans-6,cis-9,cis-12 andcis-6,cis-9,trans-12 18∶3 acids with minor amounts ofcis-6,trans-9,cis-12 18∶3 acid. One di-trans isomer, supposed to be thetrans-6,cis-9,trans-12 18∶3 acid, is present in low although noticeable amounts in some of the heated oils. The content of these artificial fatty acids increases with increasing temperatures and duration of heating. The degree of isomerization (DI) of γ-linolenic acid is less than 1% when the oil is deodorized at 200°C for 2 h. Heating at 260°C for 5 h increases the DI up to 74%. Isomerization of γ-linolenic acid resembles that of α-linolenic (cis-9,cis-12,cis-15 18∶3) acid in several aspects: The same kinds and numbers of isomers are formed, and similar degrees of isomerization are reached when the octadecatrienoic acids are heated under identical conditions. It seems that the reactivity of a double-bondvis-à-vis cis-trans isomerization is linked to its relative position, central or external, and not to its absolute position (Δ6, 9, 12 or 15).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号