首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于分离参数标定的鱼眼镜头成像模型研究   总被引:1,自引:0,他引:1  
鱼眼图像具有大视场角,但在应用方面存在严重畸变,为了探索鱼眼镜头的成像规律,本文提出一种基于分离参数标定的鱼眼镜头成像模型研究方法。对相机的物理参数进行分离标定,设计靶标,拟合径向、切向畸变系数,从而得到鱼眼镜头成像模型。比较由成像模型反推出的物点与真实物点的位置,实验结果表明,经本文提出的成像模型得到的成像点与真实物点的入射角和偏移角的误差均值分别为0.011 5和0.019 4。采用基于分离参数标定的鱼眼镜头成像模型研究方法可以较好地反映鱼眼镜头的成像规律,为更广泛地应用鱼眼镜头奠定基础。  相似文献   

2.
《计算机工程》2019,(12):196-200
针对鱼眼镜头的高精度标定需求,提出一种基于除法畸变模型的线性标定方法。通过除法模型将标定问题转换为线性方程组求解问题,在确定相机畸变中心后对畸变方程与投影矩阵进行解耦,分别求解相机内外参数和畸变系数,从而实现鱼眼镜头的快速鲁棒标定。实验结果表明,与非线性标定方法相比,该方法在保证标定准确性和可靠性的同时,计算效率提高了约10倍。  相似文献   

3.
一种鱼眼镜头成像立体视觉系统的标定方法   总被引:15,自引:0,他引:15  
贾云得  吕宏静  徐岸  刘万春 《计算机学报》2000,23(11):1215-1219
鱼眼镜头成像立体视觉系统在微小型机器人视觉导航和近距离大视场物体识别与定位中有着广泛的应用 .尽管鱼眼镜头摄像机具有很大的视场角 (接近 180°) ,但同时也引入严重的图像变形 ,常规的摄像机标定方法无法使用 .该文提出一种标定鱼眼镜头摄像机立体视觉系统的方法 .在鱼眼镜头变形模型的基础上 ,通过考虑鱼眼镜头成像的径向变形、偏心变形和薄棱镜变形 ,建立了鱼眼镜头成像的精确成像模型 ;然后 ,利用非线性迭代算法 ,精确求解摄像机外部参数、内部参数 .实验表明 ,使用该方法得到的立体视觉系统参数满足精确恢复大场景稠密深度图的要求 .  相似文献   

4.
畸变是鱼眼镜头的最大的问题,针对这一情况,提出一种利用双椭圆模型对鱼眼镜头进行畸变校正的算法,在改善鱼眼畸变的情况下,同时能够保障实时输出;对鱼眼图像进行边缘扫描和检测,采用线性拟合的方法获取鱼眼图像的光心和半径,经过双椭圆模型寻找校正前和校正后图像的映射关系,调用GPU加速处理,达到实时输出的效果,经过实验对比,针对鱼眼镜头引起的畸变问题进行校正并且能够实时输出;  相似文献   

5.
一种简单快速的相机标定新方法   总被引:2,自引:0,他引:2  
本文提出了一种新的相机自标定方法,该方法要求摄像机在3个(或3个以上)不同方位摄取一个包含其内接正三角形的圆的新型标定模板的图像.首先,从模板图像中推导得到圆环点的像点坐标;然后通过得到的圆环点像点坐标,可线性求解摄像机内参数.与传统方法不同的是,该方法避免了复杂的椭圆拟合和直线拟合,降低了计算复杂度,提高了标定速度和...  相似文献   

6.
提出了一种基于扩展摄像机成像模型的自标定方法,将采用不同视点成像的观念转换为不同方向透视投影下分析,得到在一幅图像中同时建立三对不同方向的空间面与图像面的单应关系,进而建立不同面的圆环点绝对二次方程,实现单幅图像标定。采用长方体进行实验,模拟实验和真实图像实验均验证了这种思维方法的可行性和正确性。  相似文献   

7.
一种基于弹性模型的图像放大算法   总被引:1,自引:0,他引:1  
康牧  李永亮 《计算机科学》2009,36(10):292-295
为了避免在图像放大时图像中出现锯齿和模糊边缘的现象,分析了最近邻插值模型和曲面拟合模型,提出了一种基于弹性模型的图像放大算法,给出了插值运算的数学公式,模拟了不同算法作用于图像放大的输出结果。实验结果表明,该算法能有效地应用于数字图像的放大处理,得到的图像轮廓清晰,边界分明,且算法简单,易于实现。  相似文献   

8.
由于灭点具有很多独特的几何属性且大量地存在于建筑物场景中,因此针 对建筑物重建,提出了一种基于灭点的相机标定方法。首先通过构造各种几何约束关系,如 灭点与相机矩阵间的关系、世界坐标原点和相机矩阵间的关系,逐步实现相机矩阵的度量重 建和欧氏重建,获得相机矩阵的值,然后通过分解相机矩阵得到相机的内外部参数。该方法 在标定过程中无须借助任何标定物,求解过程简单,标定速度快。实验结果表明,该方法可 以满足虚拟现实中建筑物场景重建的需要。  相似文献   

9.
鱼眼镜头所拍摄的图像具有严重的畸变。为了消除鱼眼图像的畸变,提出了一种改进的基于经线模型的校正算法。该算法首先建立经线模型,然后利用改进的校正算法对鱼眼图像进行校正,再建立半圆模型对校正过的图像进行修正,得到最终的图像。该算法不需要进行鱼眼镜头的标定以及参数的估计,通过建立全局统一的模型,对鱼眼图像进行校正。通过对模型图像和真实图像进行实验,结果表明,文中提出的算法能高效快捷地对鱼眼图像进行校正,而且具有较好的效果。  相似文献   

10.
针对基于Time-of-Flight(TOF)相机的彩色目标三维重建需标定CCD相机与TOF相机联合系统的几何参数,在研究现有的基于彩色图像和TOF深度图像标定算法的基础上,提出了一种基于平面棋盘模板的标定方法。拍摄了固定在平面标定模板上的彩色棋盘图案在不同角度下的彩色图像和振幅图像,改进了Harris角点提取,根据棋盘格上角点与虚拟像点的共轭关系,建立了相机标定系统模型,利用Levenberg-Marquardt算法求解,进行了标定实验。获取了TOF与CCD相机内参数,并利用像平面之间的位姿关系估计两相机坐标系的相对姿态,最后进行联合优化,获取了相机之间的旋转矩阵与平移向量。实验结果表明,提出的算法优化了求解过程,提高了标定效率,能够获得较高的精度。  相似文献   

11.
We describe a mathematical and algorithmic study of the Lambertian “Shape-From-Shading” problem for orthographic and pinhole cameras. Our approach is based upon the notion of viscosity solutions of Hamilton-Jacobi equations. This approach provides a mathematical framework in which we can show that the problem is well-posed (we prove the existence of a solution and we characterize all the solutions). Our contribution is threefold. First, we model the camera both as orthographic and as perspective (pinhole), whereas most authors assume an orthographic projection (see Horn and Brooks (1989) for a survey of the SFS problem up to 1989 and Zhang et al. (1999), Kozera (1998), Durou et al. (2004) for more recent ones); thus we extend the applicability of shape from shading methods to more realistic acquisition models. In particular it extends the work of Prados et al. (2002a) and Rouy and Tourin (1992). We provide some novel mathematical formulations of this problem yielding new partial differential equations. Results about the existence and uniqueness of their solutions are also obtained. Second, by introducing a “generic” Hamiltonian, we define a general framework allowing to deal with both models (orthographic and perspective), thereby simplifying the formalization of the problem. Thanks to this unification, each algorithm we propose can compute numerical solutions corresponding to all the modeling. Third, our work allows us to come up with two new generic algorithms for computing numerical approximations of the “continuous solution of the “Shape-From-Shading” problem as well as a proof of their convergence toward that solution. Moreover, our two generic algorithms are able to deal with discontinuous images as well as images containing black shadows. First online version published in October, 2005  相似文献   

12.
由于加工误差和装配误差的存在,摄像机光学系统与理想的小孔透视模型有一定的差别,致使物体点在摄像机平面上实际所成的像与理想成像之间存在不同程度的非线性光学畸变。为了提高图像检测、模式匹配等定量分析的准确性,必须对这一类畸变进行修正。该文以针孔摄像机模型为基础,综合考虑了摄像机的透镜畸变效应,并借助于开放计算机视觉函数库OPENCV,实现了一种基于张正友摄像机标定的改进算法。利用检测得到的角点,获得物体的世界坐标和图像坐标。结果证明该文中的标定算法实现简单,精度高,稳定性好。  相似文献   

13.
由于加工误差和装配误差的存在,摄像机光学系统与理想的小孔透视模型有一定的差别,致使物体点在摄像机平面上实际所成的像与理想成像之间存在不同程度的非线性光学畸变。为了提高图像检测、模式匹配等定量分析的准确性,必须对这一类畸变进行修正。该文以针孔摄像机模型为基础,综合考虑了摄像机的透镜畸变效应,并借助于开放计算机视觉函数库OPENCV,实现了一种基于张正友摄像机标定的改进算法。利用检测得到的角点,获得物体的世界坐标和图像坐标。结果证明该文中的标定算法实现简单,精度高,稳定性好。  相似文献   

14.
Central catadioptric cameras are widely used in virtual reality and robot navigation,and the camera calibration is a prerequisite for these applications.In this paper,we propose an easy calibration method for central catadioptric cameras with a 2D calibration pattern.Firstly,the bounding ellipse of the catadioptric image and field of view (FOV) are used to obtain the initial estimation of the intrinsic parameters.Then,the explicit relationship between the central catadioptric and the pinhole model is used to initialize the extrinsic parameters.Finally,the intrinsic and extrinsic parameters are refined by nonlinear optimization.The proposed method does not need any fitting of partial visible conic,and the projected images of 2D calibration pattern can easily cover the whole image,so our method is easy and robust.Experiments with simulated data as well as real images show the satisfactory performance of our proposed calibration method.  相似文献   

15.
一种反射折射摄像机的简易标定方法   总被引:3,自引:0,他引:3  
Central catadioptric cameras are widely used in virtual reality and robot navigation, and the camera calibration is a prerequisite for these applications. In this paper, we propose an easy calibration method for central catadioptric cameras with a 2D calibration pattern. Firstly, the bounding ellipse of the catadioptric image and field of view (FOV) are used to obtain the initial estimation of the intrinsic parameters. Then, the explicit relationship between the central catadioptric and the pinhole model is used to initialize the extrinsic parameters. Finally, the intrinsic and extrinsic parameters are refined by nonlinear optimization. The proposed method does not need any fitting of partial visible conic, and the projected images of 2D calibration pattern can easily cover the whole image, so our method is easy and robust. Experiments with simulated data as well as real images show the satisfactory performance of our proposed calibration method.  相似文献   

16.
基于一维标定物的多摄像机标定   总被引:4,自引:0,他引:4  
王亮  吴福朝 《自动化学报》2007,33(3):225-231
一维标定物是由三个或三个以上彼此距离已知的共线点构成的. 现有文献指出只有当一维标定物做平面运动或者绕固定点转动时,才能实现摄像机的标定. 本文的研究结果表明,当多个摄像机同时观察作任意刚体运动的一维标定物时,则该摄像机组能被线性地标定. 本文给出一种线性标定算法,并使用最大似然准则对线性算法结果进行精化. 模拟实验和真实图像实验都表明本文的算法是有效可行的.  相似文献   

17.
全景相机的标定一般是在单视点环境下进行的,但由于单视点约束条件较为苛刻,所以系统很难精确标定。因此研究在非单视点下的全景相机标定问题有很大的应用价值。本文提出一种基于平面二次曲线计算非单视点折反射全景相机反射镜位置与姿态的标定方法。该方法在标定过程中不需要非线性迭代,可直接获得反射镜位置与姿态参数的解析解。最后本文进行相关的标定实验,用全景透视和柱面展开图像验证标定结果,验证了本文提出的标定方法准确有效,且计算简单,易于实现。  相似文献   

18.
吴芳  茅健  周玉凤  李情 《计算机测量与控制》2017,25(7):206-208, 229
相机标定技术是结构光三维视觉测量的关键技术之一,结构光测量系统的相机标定的精度对三维测量的精度有很大影响;首先对三线结构光系统图的相机标定方法进行了分析,简单介绍了工业相机成像的几何模型及标定的原理;其次利用Harris角点检测方法提取特征点坐标,并选用了BP神经网络来校正工业相机的畸变模型,以提高标定算法的优化速度和标定精度;最后采用张正友的平面标定法对校正后的摄像机模型进行标定实验,由实验结果知,该方法具有一定的准确性和有效性,在一定误差范围内,基于神经网络畸变校正的张正友相机标定能够有效提高视觉检测的精度。  相似文献   

19.
基于校准靶的C形臂相机模型自动校准方法   总被引:1,自引:0,他引:1       下载免费PDF全文
根据校准靶标志点影像的特点,提出一种自动的离线C形臂相机模型校准方法。应用聚类算法实现标志点信息的自动识别,通过行列索引表简化标志点网格姿态的识别,自动建立标志点在影像坐标系和空间坐标系下坐标的对应关系,经几何变形校正后,实现C形臂相机的校准。实验数据证明,该方法具有良好的鲁棒性,误差小于1 mm,可应用于基于术中C形臂X线影像的手术导航系统。  相似文献   

20.
摄像机定标是计算机视觉中一个非常重要的问题.对CCD/INS复合末制导系统中摄像机定标问题进行了研究.文中介绍了一种基于平面消影点的摄像机定标方法.该方法从消影点的基本性质和方形平面模板的几何特征出发,推导并证明了正交消影点之间的约束关系式,从这个正交约束中可以解析地求出摄像机的有效焦距.消影点从3D-2D的对应点坐标中解算求得,相比于图像处理方法具有更好的抗干扰性.方法原理简单、实现方便,仿真实验和真实图像实验结果均验证了该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号