首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study deals with exergoeconomic analysis of a combined heat and power (CHP) system along its main components installed in Eskisehir City of Turkey. Quantitative exergy cost balance for each component and the whole CHP system is considered, while exergy cost generation within the system is determined. The exergetic efficiency of the CHP system is obtained to be 38.33% with 51 475.90 kW electrical power and the maximum exergy consumption between the components of the CHP system is found to be 51 878.82 kW in the combustion chamber. On the other hand, the exergoeconomic analysis results indicate that the unit exergy cost of electrical power produced by the CHP system accounts for 18.51 US$ GW?1. This study demonstrates that exergoeconomic analysis can provide extra information than exergy analysis, and the results from exergoeconomic analysis provide cost‐based information, suggesting potential locations for the CHP system improvement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This study deals with the energetic and exergetic performance assessment of a combined heat and power system with micro gas turbine (MGTCHP). Quantitative energy and exergy balance for each component and the whole MGTCHP system was considered, while energy and exergy consumption within the system were determined. The performance characteristics of this MGTCHP system were evaluated using energy and exergy analyses methods. The energetic and exergetic efficiencies of the MGTCHP system are calculated as 75.99% with 254.55 kW (as 99.15 kW—electrical and 155.40 kW—hot water@363.15 K) and 35.80% with 123.61 kW (as 99.15 kW—electrical and 24.46 kW—hot water@363.15 K), respectively. The maximum energy loss and exergy consumption occur at 44.03 kW in the stack gas and 129.61 kW in the combustion chamber, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
By combining heat and power generation, mini‐combined and micro‐combined heat and power systems (MCHP) provide an efficient, decentralised means of power generation that can complement the composition of the electricity generation mix. Dynamic tools capable of handling transient system behaviour are required to assess MCHP efficiency beyond a mere static analysis based on steady‐state design parameters. Using a simulation of a cogeneration system, we combine exergetic definitions for different operational system states to quantify the overall system efficiency continuously over the whole period of operation. The concept of exergy allows direct comparison of different forms of energy. A sensitivity analysis was performed where we quantified the effect on MCHP overall performance under varying engine rotational speed, thermal energy storage size and fluid storage temperature in a range of MCHP simulations. We found that the exergetic quantity of natural gas used by the MCHP decreased slightly at higher engine speeds (?2% to ?4%). While the total amount of electricity generated is almost constant across the range of different engine output, more thermal exergy (up to +21%) can be recovered when the engine is operating at elevated speeds. Furthermore, selection of specific optimal thermal storage fluid temperatures can aid in improving system efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Drying is a high‐energy‐intensive operation and an important step in the pasta production. In this study, exergy analysis of a four‐step drying system in a farfalle pasta production line using actual operational data obtained from a plant located in Izmir, Turkey, was performed. Exergy loss rates, evaporation rates, exergy efficiencies, and improvement in potential rates for each dryer section were determined in this drying system. The exergy efficiency values varied between 0.25% and 5.27% from the predrying to the final drying section. The exergy efficiency value for the entire drying system was calculated to be 2.96%, and the highest exergetic improvement in potential rate was 165.54 kW for the first dryer section. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
何晓红  蔡睿贤  苟晨华 《节能》2008,27(3):16-18,37
简介内燃机冷热电联产系统的发展现状,总结了发电用内燃机在设计点工况下主要参数的现有分布范围:排气温度约为450~600℃,排气流量基本上与额定功率呈线性关系,发电效率一般在33%~45%。对联产系统不同形式的能量输出、联产系统经济效率等进行分析研究,表明联产系统回收的能量主要来自排气和冷却水,排气回收能量一般高于冷却水回收能量。与热电联产系统相比,由于制冷比供热困难,冷热电联产系统的经济效率较高。  相似文献   

6.
The present study deals with a comprehensive thermodynamic modeling of a combined heat and power (CHP) system in a paper mill, which provides 50 MW of electric power and 100 ton h?1 saturated steam at 13 bars. This CHP plant is composed of air compressor, combustion chamber (CC), Air Preheater, Gas Turbine (GT) and a Heat Recovery Heat Exchanger. The design parameters of this cycle are compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), GT isentropic efficiency (ηGT), CC inlet temperature (T3), and turbine inlet temperature (T4). In the multi‐objective optimization three objective functions, including CHP exergy efficiency, total cost rate of the system products, and CO2 emission of the whole plant, are considered. The exergoenvironmental objective function is minimized whereas power plant exergy efficiency is maximized using a Genetic algorithm. To have a good insight into this study, a sensitivity analysis of the results to the interest rate as well as fuel cost is performed. The results show that at the lower exergetic efficiency, in which the weight of exergoenvironmental objective is higher, the sensitivity of the optimal solutions to the fuel cost is much higher than the location of the Pareto Frontier with the lower weight of exergoenvironmental objective. In addition, with increasing exergy efficiency, the purchase cost of equipment in the plant is increased as the cost rate of the plant increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The main objective of this study, which is conducted for the first time to the best of the authors' knowledge, is to identify improvements in olive oil refinery plants' performance. In the analyses, the actual operational data are used for performance assessment purposes. The refinery plant investigated is located in Izmir Turkey and has an oil capacity of 6250 kg h−1. It basically incorporates steam generators, several tanks, heat exchangers, a distillation column, flash tanks and several pumps. The values for exergy efficiency and exergy destruction of operating components are determined based on a reference (dead state) temperature of 25°C. An Engineering Equation Solver (EES) software program is utilized to do the analyses of the plant. The exergy transports between the components and the consumptions in each of the components of the whole plant are determined for the average parameters obtained from the actual data. The exergy loss and flow diagram (the so‐called Grassmann diagram) are also presented for the entire plant studied to give quantitative information regarding the proportion of the exergy input that is dissipated in the various plant components. Among the observed components in the plant, the most efficient equipment is found to be the shell‐ and tube‐type heat exchanger with an exergy efficiency value of 85%. The overall exergetic efficiency performance of the plant (the so‐called functional exergy efficiency) is obtained to be about 12%, while the exergy efficiency value on the exergetic fuel–product basis is calculated to be about 65%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrocarbons (HCs) are excellent refrigerants in many ways such as energy efficiency, critical point, solubility, transport and heat transfer properties, but they are also flammable, which causes the need for changes in standards, production and product. There are increasing number of scientists and engineers who believe that an alternative solution, which has been overlooked, may be provided by using HCs. The main objective of this study is to perform energy and exergy analyses for a vapor compression refrigeration system with an internal heat exchanger using a HC, isobutene (R600a). For a refrigeration capacity of 1 kW and cold chamber temperature of 0°C, energy and exergy balances are taken into account to determine the performance of the refrigeration system. Energy and exergy fluxes are determined, and irreversibility rates are calculated for every component of the system. It is seen that the compressor has the highest irreversibility rate, and the heat exchanger has the lowest. Also from the result of the analysis, it is found that condenser and evaporator temperatures have strong effects on energetic and exergetic performances of the system such as coefficient of performance (COP), efficiency ratio (τ), exergetic efficiency (ξ) and irreversibility rate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The present study evaluates the performance of a triple‐effect evaporator with forward feed (TEEFF) system by using exergy analysis based on actual operational data. The orange juice with a capacity of about 1.222 kg s?1 is concentrated from a dry matter (DM) content of 12 to 65% in this TEEFF, which is situated in an orange juice concentrate line installed in a factory, located in Denizli, Turkey. A Visual Basic 6.0 program was also developed to show how the exergetic performance characteristics of the system vary with the feed flow rates ranging from 1.222 to 1.667 kg s?1. The total exergy efficiency of the TEEEFF is found to be on average 0.85. The largest exergy destruction occurs in the first‐effect of the TEEFF system with 48.2% of total, followed by the third and second effects with 32.04 and 19.76% of that. Evaporator performance is also rated on the basis of steam economy, which is obtained to be in the range of 2.05–2.14 under the operation conditions. It is expected that the analysis presented here should provide a designer with a better, quantitative grasp of the inefficiencies and their relative magnitudes in the design, simulation and operation of multiple‐effect evaporators. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study deals with energy and exergy analysis of the experimental solar-assisted Rankine cycle working with an environmentally friendly working fluid transcritical CO2. The experimental system consists of evacuated solar collectors, a heat recovery system, condenser, a pump, and an expansion valve to simulate the realistic turbine operation. The system was designed for electricity production and the heat supply for various applications. The experiments were made funder typical winter and summer days to evaluate seasonal system performance in Kyoto, Japan. According to the obtained results, the turbine capacity was calculated as 0.118 kW and 0.177 kW for winter and summer seasons. From the exergetic point of view, solar collectors were found to be the major contributor to the total exergy destruction with 96.32% for summer and 93.58% for the winter season. Therefore, the efforts should be focused on the collectors. Thus, any attempt for improving the system performance should be focused on solar collectors first. Furthermore, the exergetic efficiency of the overall system was calculated as 7.63% for the winter season and 4.08% for the summer season. As a result, the utilization of CO2 in the energy conversion cycle can be sustainably developed and extended by providing a glimpse into the carbon-free clean energy future.  相似文献   

12.
In this study, we first consider developing a thermodynamic model of solid oxide fuel cell/gas turbine combined heat and power (SOFC/GT CHP) system under steady-state operation using zero-dimensional approach. Additionally, energetic performance results of the developed model are compared with the literature concerning SOFC/GT hybrid systems for its reliability. Moreover, exergy analysis is carried out based on the developed model to obtain a more efficient system by the determination of irreversibilities. For exergetic performance evaluation, exergy efficiency, exergy output and exergy loss rate of the system are considered as classical criteria. Alternatively, exergetic performance coefficient (EPC) as a new criterion is investigated with regard to main design parameters such as fuel utilization, current density, recuperator effectiveness, compressor pressure ratio and pinch point temperature, aiming at achieving higher exergy output with lower exergy loss in the system. The simulation results of the SOFC/GT CHP system investigated, working at maximum EPC conditions, show that a design based on EPC criterion has considerable advantage in terms of entropy-generation rate.  相似文献   

13.
In this study we present an energy and exergy modelling of industrial final macaroni (pasta) drying process for its system analysis, performance evaluation and optimization. Using actual system data, a performance assessment of the industrial macaroni drying process through energy and exergy efficiencies and system exergy destructions is conducted. The heat losses to the surroundings and exergy destructions in the overall system are quantified and illustrated using energy and exergy flow diagrams. The total energy rate input to system is 316.25 kW. The evaporation rate is 72 kg h?1 (0.02 kg s?1) and energy consumption rate is found as 4.38 kW for 1 kg water evaporation from product. Humidity product rate is 792 kg h?1 (0.22 kg s?1) and energy consumption rate is found about 0.4 kW for 1 kg short cut pasta product. The energy efficiencies of the pasta drying process and the overall system are found to be as 7.55–77.09% and 68.63%. The exergy efficiency of pasta drying process is obtained to be as 72.98–82.15%. For the actual system that is presented the system exergy efficiency vary between 41.90 and 70.94%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The study deals with the energetic and exergetic analyses of a cogeneration (combined heat and power, CHP) system installed in a ceramic factory, located in Izmir, Turkey. This system has three gas turbines with a total capacity of 13 MW, six spray dryers and two heat exchangers. In the analysis, actual operational data over one‐month period are utilized. The so‐called CogeNNexT code is written in C++ and developed to analyze energetic and exergetic data from a database. This code is also used to analyze turbines, spray dryers and heat exchangers in this factory. Specifications of some parts of system components have been collected from the factory. Based on the 720 h data pattern (including 43 200 data), the mean energetic and exergetic efficiency values of the cogeneration system are found to be 82.3 and 34.7%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

16.
热泵开水器具有较高的能源利用效率,是公共场所电加热开水装置的理想替代品。从提高能源效率和一机两用的角度,构建了一种高温复合热泵开水器系统。建立了系统热力学模型,选R236fa、R245fa、R365mfc、R245ca、RC318和R236ea等6种较高临界温度的制冷工质,通过能量分析和[火用]分析的方法,探讨了不同制冷工质对高温复合热泵开水器系统性能的影响。研究结果表明:R245fa作为工质的高温复合热泵开水器系统具有最佳的性能,而以RC318作为工质的系统性能最差。在给定工况下,R245fa作为工质系统制热性能系数(COPh)为2.47,而其制冷性能系数(COPc)为3.37,[火用]损失和[火用]效率分别为9.47 kW和49.07%;与R245fa相比,RC318作为工质系统的总能耗增加了39.53%。  相似文献   

17.
In this study heat pump systems having different heat sources were investigated experimentally. Solar‐assisted heat pump (SAHP), ground source heat pump (GSHP) and air source heat pump (ASHP) systems for domestic heating were tested. Additionally, their combination systems, such as solar‐assisted‐ground source heat pump (SAGSHP), solar‐assisted‐air source heat pump (SAASHP) and ground–air source heat pump (GSASHP) were tested. All the heat pump systems were designed and constructed in a test room with 60 m2 floor area in Firat University, Elazig (38.41°N, 39.14°E), Turkey. In evaluating the efficiency of heat pump systems, the most commonly used measure is the energy or the first law efficiency, which is modified to a coefficient of performance for heat pump systems. However, for indicating the possibilities for thermodynamic improvement, inadequate energy analysis and exergy analysis are needed. This study presents an exergetic evaluation of SAHP, GSHP and ASHP and their combination systems. The exergy losses in each of the components of the heat pump systems are determined for average values of experimentally measured parameters. Exergy efficiency in each of the components of the heat pump systems is also determined to assess their performances. The coefficient of performance (COP) of the SAHP, GSHP and ASHP were obtained as 2.95, 2.44 and 2.33, whereas the exergy losses of the refrigerant subsystems were found to be 1.342, 1.705 and 1.942 kW, respectively. The COP of SAGSHP, SAASHP and GSASHP as multiple source heat pump systems were also determined to be 3.36, 2.90 and 2.14, whereas the exergy losses of the refrigerant subsystems were approximately 2.13, 2.996 and 3.113 kW, respectively. In addition, multiple source heat pump systems were compared with single source heat pump systems on the basis of the COP. Exergetic performance coefficient (EPC) is introduced and is applied to the heat pump systems having various heat sources. The results imply that the functional forms of the EPC and first law efficiency are different. Results show that Exloss,total becomes a minimum value when EPC has a maximum value. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the hydrogen fuel effect on the exergetic performance of a turbojet engine used in a military trainer aircraft is investigated. For the first step, the performance assessments of the exergetic performance are conducted according to jet fuel usage and the actual test cell data of the engine. For the second step, an exergetic evaluation is parametrically estimated to use the hydrogen fuel in the engine. Finally, the performance results of the engine run by jet fuel are compared with the performance results of the engine run by hydrogen fuel. Regarding the results of this study, by using hydrogen fuel in the engine, the exergy efficiency of the engine decreases from 15.40% to 14.33%, while the waste exergy rate increases from 6196.51 kW to 6669.4 kW. At the same time, the exergy rate of the fuel rises from 7324.87 kW to 7785.25 kW, hence the specific fuel exergy of the hydrogen fuel is higher than that of the jet fuel. The waste exergy flow cost of the engine rises from 16.52 × 10?3 US$/kW to 17.79 × 10?3 US$/kW. The environmental effect factor of the engine escalates from 5.49 to 5.98 and the ecological effect factor increases from 6.49 to 6.98. On the other hand, the exergetic sustainability index of the engine reduces from 0.182 to 0.167 when the sustainable efficiency factor of the engine goes down from 1.182 to 1.167. Between the components, for both jet fuel and hydrogen fuel, the CC has the highest values of the fuel exergy waste ratio, the relative waste exergy ratio, the product exergy waste ratio, the fuel ratio indicator, the product ratio indicator, the waste exergy cost flow, the environmental effect factor, the ecological effect factor, and the exergetic improvement potential when the CC has the lowest values of the exergy efficiency, exergetic sustainability index, and sustainable efficiency factor, respectively. The reason for this result is that the combustion process contains high irreversibities. The obtained results indicate that the hydrogen fuel usage in the turbojet engine badly affects the exergetic performance of the engine and its components (especially the combustion chamber) hence the specific exergy of the hydrogen fuel is higher than the jet fuel's. On the other hand, the exhaust emissions emitted to the environment decrease from 0.509 kg/s to 0.0045 kg/s with the hydrogen fuel usage.  相似文献   

19.
A detailed system study on an integrated gasifier-SOFC test system which is being constructed for combined heat and power (CHP) application is presented. The performance of the system is evaluated using thermodynamic calculations. The system includes a fixed bed gasifier and a 5 kW SOFC CHP system. Two kinds of gas cleaning systems, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system, are considered to connect the gasifier and the SOFC system. A complete model of the gasifier-SOFC system with these two gas cleaning systems is built and evaluated in terms of energy and exergy efficiencies. A sensitivity study is carried out to check system responses to different working parameters. The results of this work show that the electrical efficiencies of the gasifier-SOFC CHP systems with different gas cleaning systems are almost the same whereas the gasifier-SOFC CHP systems with the high temperature gas cleaning system offers higher heat efficiency for both energy and exergy.  相似文献   

20.
In evaluating the efficiency of heat pump (HP) systems, the most commonly used measure is the energy (or first law) efficiency, which is modified to a coefficient of performance (COP) for HP systems. However, for indicating the possibilities for thermodynamic improvement, energy analysis is inadequate and exergy analysis is needed. This study presents an exergetic assessment of a ground‐source (or geothermal) HP (GSHP) drying system. This system was designed, constructed and tested in the Solar Energy Institute of Ege University, Izmir, Turkey. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. COP values for the GSHP unit and overall GSHP drying system are found to range between 1.63–2.88 and 1.45–2.65, respectively, while corresponding exergy efficiency values on a product/fuel basis are found to be 21.1 and 15.5% at a dead state temperature of 27°C, respectively. Specific moisture extraction rate (SMER) on the system basis is obtained to be 0.122 kg kW?1 h?1. For drying systems, the so‐called specific moisture exergetic rate (SMExR), which is defined as the ratio of the moisture removed in kg to the exergy input in kW h, is also proposed by the authors. The SMExR of the whole GSHP drying system is found to be 5.11 kg kW?1 h?1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号