首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为满足断路器机械状态监测的高可靠性要求,弥补现有方法易将轻微故障及无训练故障样本类型误识别为正常状态的不足,提出一种基于局域均值分解(LMD)能量熵和支持向量数据描述(SVDD)的高压断路器机械状态监测新方法。首先,利用LMD方法将断路器振动信号分解为一系列的PF(Product Function)分量,将各PF分量的包络按时间等间隔分段,并提取各PF分量包络的能量熵构成特征向量;然后,采用正常状态断路器振动信号的LMD能量熵向量训练SVDD分类器;最后,通过SVDD分类器对断路器的机械状态进行判断。实测信号实验证明,新方法比支持向量机(SVM)、BP神经网络(BPNN)等传统多类分类方法有更好的状态监测效果。  相似文献   

2.
为了检测出断路器的机械结构故障类型,本文分析了断路器机械振动信号的特性,提出基于经验模态分解(EMD)能量总量法与支持向量机(SVM)理论相结合的中压断路器振动信号的特征向量提取和故障分类的分析方法。首先将断路器的振动信号进行经验模态分解,得到所需要的内禀模态函数(IMF),通过离散采样点求能量总量的方法求出包含主要故障特征信息的各个内禀模态函数分量的能量总量。利用IMF分量能量总量作为特征向量,并以此作为支持向量机输入,将测试样本信号的故障特征向量输入训练好的SVM,并对SVM及核函数参数进行遗传算法优化,采用"二叉树分类"支持向量机分类机制进行故障分类。经实验分析该方法能很好地识别出振动信号的差别及故障类型。  相似文献   

3.
断路器的振动信号包含了许多机械信息。为了更加精确的对断路器的故障进行识别,本文提出一种基于变分模态分解(variational mode decomposition, VMD)和支持向量机结合的方法。首先利用局部极值法确定合适的VMD分解模态数。其次通过VMD将信号分解成多个具有紧支性的模态,计算各模态的奇异值作为特征向量,将其输入支持向量机(support vector machine, SVM),训练故障模型。最后通过SVM诊断测试信号,成功对不同故障进行诊断。  相似文献   

4.
以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解(variational mode decomposition, VMD)及粒子群算法(particle swarm optimization, PSO)优化支持向量机(support vector machine, SVM)的故障诊断方法。首先,对信号进行VMD分解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入PSO优化SVM的关键参数,将提取的特征向量输入PSO-SVM进行训练和识别。将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。  相似文献   

5.
针对高压断路器分、合闸动作过程中产生的振动信号持续时间短暂及强烈的非线性非平稳性,导致的特征提取困难问题,提出一种变分模态分解(VMD)-希尔伯特(Hilbert)边际谱能量熵,及支持向量机(SVM)的高压断路器振动信号组合特征提取和机械故障诊断方法。采用VMD对高压断路器振动信号进行分解,得到一系列反映振动信号局部特性的本征模态函数(IMF);对IMF进行Hilbert变换,并求取对高压断路器机械状态变化敏感的Hilbert边际谱能量熵作为特征向量;将特征向量输入到SVM分类器,实现高压断路器机械故障的智能诊断。试验结果表明:该方法能够准确识别高压断路器的常见机械故障类型,具有一定的工程应用价值。  相似文献   

6.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。  相似文献   

7.
依据高压断路器振动信号特性,提出一种自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与样本熵相结合的高压断路器故障特征提取方法。首先利用CEEMDAN将分闸振动信号分解成一系列内禀模态函数(intrinsic mode function,IMF),然后利用相关系数法与归一化能量筛选包含信号主要特征信息的前7阶IMF分量,求取其样本熵作为特征量,最后采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)分类器,对断路器不同故障类型进行分类识别。实验结果表明该特征提取方法能准确提取振动信号特征量,输入PSO-SVM诊断高压断路器故障能取得良好的效果。  相似文献   

8.
针对目前和应涌流识别方法较少的情况,使用VMD对励磁涌流与和应涌流电流信号进行分解.对VMD分解后的各本征模态分量求样本熵值组成特征向量,将特征向量输入PSO-SVM识别模型进行分类.通过实验验证,涌流信号样本熵值组成特征向量能很好地反映两种涌流的区别,使用PSO优化参数后的SVM模型能对两种涌流进行高效准确的识别,为保护装置下一步针对性动作提供了重要依据.  相似文献   

9.
为了有效提取局部放电信号的特征,提出了一种基于变分模态分解(VMD)和多尺度熵(MSE)的特征向量提取方法,并采用BP神经网络分类器对放电类型进行识别。特征向量的提取过程是首先利用VMD分解算法对局部放电信号进行分解,得到数个有限带宽的固有模态分量;然后分别计算分解得到的模态分量的MSE,将其组合得到初始特征向量;最后利用主成分分析法对初始特征向量进行降维处理。用该方法对实验室条件下4种放电信号和不同放电程度的电晕放电进行特征提取及识别。结果表明,该方法能有效提取放电信号的特征,以其作为特征向量可以正确识别不同的放电类型和同种放电类型下的不同放电程度。  相似文献   

10.
针对贯通式同相牵引直接供电系统可能发生的雷击故障、雷击干扰和接地故障3种扰动进行建模分析和识别研究。在牵引网仿真模型的基础上,通过实验得到3种扰动的暂态特征。根据以上故障提出了改进总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)与概率神经网络(Probabilistic Neural Network,PNN)结合的智能识别方法。MEEMD分解故障暂态电流信号得到本征模态函数(Intrinsic Mode Function,IMF),分别用样本熵和排列熵提取IMFs分量特征,结合PNN进行故障识别,通过实验看出,基于MEEMD排列熵与PNN结合的智能识别方法能较好地识别牵引网的3种故障。  相似文献   

11.
为了更加准确有效地诊断变压器绕组松动故障,提出了一种基于变分模态分解(VMD)和鲸鱼优化支持向量机(WOA-SVM)的变压器绕组松动故障诊断方法。首先,对某10 kV变压器进行模拟故障试验,测量其振动信号;随后,采用VMD将非平稳的振动信号分解成多个本征模态函数(IMF),并计算各层IMF的能量熵,构成特征向量;最后,将特征向量输入鲸鱼算法(WOA)优化的支持向量机(SVM)中训练出分类模型,实现变压器绕组松动故障诊断。结果表明,所提方法适用于变压器绕组松动故障诊断,并且相较于传统的改进SVM分类模型,所提方法的故障识别准确率更高。  相似文献   

12.
针对输电线路短路故障危害大,故障识别率较低的情况,提出基于变分模态分解(VMD)样本熵与核极端学习机(KELM)相结合的输电线路故障诊断方法,提高输电线路故障诊断的正确率。首先,采用VMD对故障后的三相电压进行分解,得到一系列三相平稳的模态分量;其次分别计算每组各分量的样本熵值,作为输电线路故障提取特征,组成样本库;以提取的输电线路故障特征输入到核极端学习机进行训练,获取诊断模型,然后比较其与极限学习机(ELM)、支持向量机(SVM)和BP神经网络的诊断效果。仿真结果表明,VMD样本熵+KELM的输电线路故障诊断模型精度高于其他3种算法,且运算速率更快,噪声鲁棒性更好。  相似文献   

13.
为实现对锂离子电池过充及外部短路故障的诊断,提出一种基于改进变分模态分解(VMD)-多尺度熵(MSE)的锂离子电池振动信号特征提取方法.通过改进VMD对振动信号进行分解,对所得固有模态分量求多尺度熵值,提取锂离子电池在不同工况下的振动特征,最后基于此特征进行K均值聚类,完成对过充和外部短路故障的故障识别.经对比实验验证,该方法能有效提取锂离子电池振动信号特征量,正确识别锂离子电池的过充及外部短路故障,且准确率更优.  相似文献   

14.
引入集合经验模态分解(EEMD)对Hilbert-Huang变换(HHT)方法进行改进,并将改进的HHT方法结合支持向量机(SVM)应用于高压断路器振动信号特征提取和触头超程状态识别中。采用EEMD提取反映振动信号局部特性的本征模态函数(IMF)分量,并计算IMF分量的Hilbert边际谱能量值,由此构造高压断路器触头超程状态特征量,利用得到的特征向量对SVM进行训练,实现高压断路器触头超程状态的自动识别。试验提取了高压断路器在不同触头超程下的振动信号并进行分析,结果表明所提方法能够有效识别高压断路器触头超程状态。  相似文献   

15.
基于VMD多尺度模糊熵的HVDC输电线路故障识别方法   总被引:2,自引:0,他引:2  
针对HVDC输电线路故障识别率低、远端高阻故障识别困难等问题,提出一种基于变分模态分解VMD(variational mode decomposition)多尺度模糊熵的HVDC输电线路智能故障识别方法.首先对暂态电流信号进行VMD分解,利用中心频率法则提取合适的IMF分量计算多尺度模糊熵、VMD能量和比值.分别利用V...  相似文献   

16.
断路器振动信号包含了故障诊断的特征信息,正确检测和分析振动信号是实现断路器机械故障诊断的关键。针对传统信号分析中存在模态混叠、噪声鲁棒性差等导致特征向量失真的缺点,提出将新的信号分解算法(变分模态分解VMD)与能量熵相结合构造特征向量,并利用量子粒子群改进VMD参数设置方式,优化模态个数K与惩罚因子α的取值问题。为验证该算法的有效性,将其应用在ZN63A-12型10 kV高压断路器上进行实验分析。用改进VMD能量熵提取故障特征,并输入马氏距离判别器确定故障状态。实验证明所提方法可有效提取断路器的运行状态,检测精度高达97.62%,具有较高的工程实用价值。  相似文献   

17.
为了准确地检测出高压断路器的故障类型,笔者首次将经验模态分解(EMD)方法引入高压断路器的振动信号分析当中,并提出将EMD分解得到的固有模态函数(IMF)能量熵值作为表征断路器故障类型的新特征向量。为了证实该分析方法的有效性,笔者在实验室的110 kV SF6断路器上进行了模拟实验,提取了正常和故障状态下振动信号的IMF能量熵值特征向量,并以此作为径向基神经网络的输入向量。最后,引入置信度的概念,对径向基神经网络的输出结果进行评价。该方法基于实验室研究取得了较好的识别效果,并为基于振动信号的断路器故障识别提供了一条新的思路。  相似文献   

18.
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。  相似文献   

19.
针对复杂环境下高压断路器故障诊断算法的准确率和泛化性问题,提出一种声纹及振动熵特征联合的GWO-KFCM故障诊断算方法。首先,对声音信号进行广义S变换,提取反应声纹的盒维数、方向度和对比度纹理特征;对振动信号进行变分模态分解(VMD),计算信号的排列熵。最后,构造联合特征向量送入模糊核C—均值聚类(KFCM)学习训练,利用灰狼优化(GWO)算法优化KFCM初始聚类中心,对训练样本进行预分类后输入SVM,辨识操动机构运行状态。结果表明,声纹及振动熵特征联合的GWO-KFCM故障诊断方法充分利用声振信号互补优势,对实验样本总体诊断准确率达到了100%,并且有较好的泛化能力。  相似文献   

20.
为了更准确的提取断路器故障特性,得到更可靠的故障诊断结果,在振动信号的基础上,提出了一种基于经验小波变换(Empirical Wavelet Transform,EWT)和相关向量机(Relevance Vector Machine,RVM)的断路器机械故障诊断方式。首先提取不同故障振动信号,设置阈值来初始化信号傅里叶频域分解区间,利用EWT分解得到有限带宽的多个模态。然后计算样本熵参数,计算并作为特征向量。最后,将特征向量输入相关向量机(RVM),建立不同故障的模型,对测试样本进行诊断。通过与其他方法实验对比,文中方法具有更高的故障诊断识别率,更快的识别速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号