首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different particulate matter (PM) samples were investigated by on-line single-particle aerosol time-of-flight mass spectrometry (ATOFMS). The samples consist of soot particulates made by a diffusion flame soot generator (combustion aerosol standard, CAST), industrially produced soot material (printex), soot from a diesel passenger car as well as ambient particulates (urban dust (NIST) and road tunnel dust). Five different CAST soot particle samples were generated with different elemental carbon (EC) and organic carbon (OC) content. The samples were reaerosolized and on-line analyzed by ATOFMS, as well as precipitated on quartz filters for conventional EC/OC analysis. For each sample ca. 1000 ATOFMS single-particle mass spectra were recorded and averaged. A typical averaged soot ATOFMS mass spectrum shows characteristic carbon cluster peak progressions (Cn+) as well as hydrogen-poor carbon cluster peaks (CnH(1-3)+). These peaks are originated predominately from the elemental carbon (EC) content of the particles. Often additional peaks, which are not due to carbon clusters, are observed, which either are originated from organic compounds (OC-organic carbon), or from the non-carbonaceous inorganic content of the particles. By classification of the mass spectral peaks as elemental carbon (i.e., the carbon cluster progression peaks) or as peaks originated from organic compounds (i.e., molecular and fragment ions), the relative abundance of elemental (EC) and organic carbon (OC) can be determined. The dimensionless TC/EC values, i.e., the ratio of total carbon content (TC, TC = OC + EC) to elemental carbon (EC), were derived from the ATOFMS single-particle aerosol mass spectrometry data. The EC/TC values measured by ATOFMS were compared with the TC/EC values determined by the thermal standard techniques (thermooptical and thermocoulometric method). A good agreement between the EC/TC values obtained by on-line ATOFMS and the offline standard method was found.  相似文献   

2.
Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary emissions after several hours of processing at atmospherically relevant hydroxyl radical concentrations. Less than 10% of the SOA mass can be explained using a SOA model and the measured oxidation of known precursors such as light aromatics. However, the ultimate yield of SOA is uncertain because it is sensitive to treatment of particle and vapor losses to the chamber walls. Mass spectra from an aerosol mass spectrometer (AMS) reveal that the organic aerosol becomes progressively more oxidized throughout the experiments, consistent with sustained, multi-generational production. The data provide strong evidence that the oxidation of a wide array of precursors that are currently not accounted for in existing models contributes to ambient SOA formation.  相似文献   

3.
Particle and meteorological instrumentation were used to characterize ambient atmospheric conditions, aerosol size distributions, aerosol mass concentrations, and single particle size and chemical composition in Bakersfield, CA for the period January 9, 1999 through January 28, 1999. The sampling period included four distinct meteorological periods of stagnation, clearing, haze, and rain. Particle number and mass concentrations were the highest during the stagnation episode when a heavy and extensive fog developed. Mass and number concentrations also approached these high levels during the haze period. Single particle size and composition data from an aerosol time-of-flight mass spectrometer (ATOFMS) are used to provide unique continuous information on the diversity in types of particles present, the effects of meteorology on particle size and composition, and the distribution of important chemical species within individual particles. Aerosol composition and mixing state are found to vary with meteorological conditions. Single particle data show that carbonaceous aerosol with secondary ammonium, nitrate, and sulfate dominate the aerosol concentration during a stagnation period with a dramatic composition shift occurring to sodium type particles during the haze period. The aerosol is internally mixed with respect to carbon, nitrate, sulfate, and ammonium during the stagnation period. The mixing state changes significantly over the haze period when much greater diversity in the associations of chemical species within individual particles occurs.  相似文献   

4.
Amines in fine particulate matter have been detected and quantified during ambient studies of winter inversions in Logan, UT, using aerosol mass spectrometry. Amine-related compounds account for 0.5-6 microg m(-3) of fine particulate mass during some wintertime periods. The amine contributions sometimes show a clear diurnal pattern, reaching peak concentrations during the middle of the nightwhile decreasing during the morning and afternoon. Smog chamber reactions show that the reaction of tertiary amines with nitrate radical can account for this behavior in the atmosphere. The lower bound reaction rate of trimethylamine and nitrate radical is estimated at 4.4 x 10(-16) cm3/molecules/s with a conversion rate to the aerosol phase of approximately 65%. This suggests that amines could be a contributor to secondary organic aerosol formation in areas where nitrate radical is a significant player in oxidation chemistry.  相似文献   

5.
We present a novel method for continuous, stable OH radical production for use in smog chamber studies, especially those focused on organic aerosol aging. Our source produces OH radicals from the reaction of 2,3-dimethyl-2-butene and ozone and is unique as a method that requires neither NOx nor UV photolysis of a radical precursor. Typical radical concentrations are in the range of (4-8) x 10(6) molec cm(-3) and are easily sustainable over experimental time scales of several hours. We discuss design considerations, radical production capability under different operating conditions, and the core source chemistry. As a proof of concept we present preliminary results from oxidation of n-hexacosane aerosol observed with an Aerodyne Aerosol Mass Spectrometer. The extent of hexacosane oxidation is sufficient to significantly change the organic aerosol mass spectrum by virtue of fast heterogeneous uptake of OH radicals at the particle surface, with a calculated uptake coefficient gamma = 1.04 +/-0.21.  相似文献   

6.
Aerosol time-of-flight mass spectrometry (ATOFMS) instruments measure the size and chemical composition of individual particles in real-time. ATOFMS chemical composition measurements are difficult to quantify, largely because the instrument sensitivities to different chemical species in mixed ambient aerosols are unknown. In this paper, we develop a field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS measurements are compared with collocated impactor measurements taken at Riverside, CA, in September 1996, August 1997, and October 1997. This is the first comparison of ion signal intensities from a single-particle instrument with quantitative measurements of atmospheric aerosol chemical composition. The comparison reveals that ATOFMS instrument sensitvities to both NH4+ and NO3- decline with increasing particle aerodynamic diameter over a 0.32-1.8 microm calibration range. The stability of this particle size dependence is tested overthe broad range of fine particle concentrations (PM1.8) = 17.6 +/- 2.0-127.8 +/- 1.8 microg m(-3)), ambient temperatures (23-35 degrees C), and relative humidity conditions (21-69%), encountered during the field experiments. This paper describes a potentially generalizable methodology for increasing the temporal and size resolution of atmospheric aerosol chemical composition measurements, using tandem ATOFMS-impactor sampling.  相似文献   

7.
The source apportionment accuracy of a neural network algorithm (ART-2a) is tested on the basis of its application to synthetic single-particle data generated by a source-oriented aerosol processes trajectory model that simulates particle emission, transport, and chemical reactions in the atmosphere. ART-2a successfully groups particles from the majority of sources actually present, when given complete data on ambient particle composition at monitoring sites located near the emission sources. As particles age in the atmosphere, accumulation of gas-to-particle conversion products can act to disguise the source of the primary core of the particles. When ART-2a is applied to synthetic single-particle data that are modified to simulate the biases in aerosol time-of-flight mass spectrometry (ATOFMS) measurements, best results are obtained using the ATOFMS dual ion operating mode that simultaneously yields both positive and negative ion mass spectra. The results of this study suggest that the use of continuous single-particle measurements coupled with neural network algorithms can significantly improve the time resolution of particulate matter source apportionment.  相似文献   

8.
Air quality model predictions of the size and composition of atmospheric particle classes are evaluated by comparison with aerosol time-of-flight mass spectrometry (ATOFMS) measurements of single-particle size and composition at Long Beach and Riverside, CA, during September 1996. The air quality model tracks the physical diameter, chemical composition, and atmospheric concentration of thousands of representative particles from different emissions classes as they are transported from sources to receptors while undergoing atmospheric chemical reactions. In the model, each representative particle interacts with a common gas phase but otherwise evolves separately from all other particles. The model calculations yield an aerosol population, in which particles of a given size may exhibit different chemical compositions. ATOFMS data are adjusted according to the known particle detection efficiencies of the ATOFMS instruments, and model predictions are modified to simulate the chemical sensitivities and compositional detection limits of the ATOFMS instruments. This permits a direct, semiquantitative comparison between the air quality model predictions and the single-particle ATOFMS measurements to be made. The air quality model accurately predicts the fraction of atmospheric particles containing sodium, ammonium, nitrate, carbon, and mineral dust, across all particle sizes measured by ATOFMS at the Long Beach site, and in the coarse particle size range (Da > or = 1.8 microm) atthe Riverside site. Given thatthis model evaluation is very likely the most stringent test of any aerosol air quality model to date, the model predictions show impressive agreement with the single-particle ATOFMS measurements.  相似文献   

9.
Organosulfate species have recently been identified as a potentially significant class of secondary organic aerosol (SOA) species, yet little is known about their behavior in the atmosphere. In this work, organosulfates were observed in individual ambient aerosols using single particle mass spectrometry in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Organosulfates derived from biogenically produced isoprene were detected as deprotonated molecular ions in negative-ion spectra measured by aerosol time-of-flight mass spectrometry; comparison to high-resolution mass spectrometry data obtained from filter samples corroborated the peak assignments. The size-resolved chemical composition measurements revealed that organosulfate species were mostly detected in submicrometer aerosols and across a range of aerosols from different sources, consistent with secondary reaction products. Detection of organosulfates in a large fraction of negative-ion ambient spectra - ca. 90-95% during ANARChE and ~65% of submicrometer particles in AMIGAS - highlights the ubiquity of organosulfate species in the ambient aerosols of biogenically influenced urban environments.  相似文献   

10.
During the North Atlantic marine boundary layer experiment (NAMBLEX) sampling campaign at Mace Head, Ireland, both continental and maritime air masses were sampled. Aerosol was characterized both with a TSI 3800 time-of-flight mass spectrometer (ATOFMS) and a MOUDI microorifice impactor, and particle number counts were measured independently with an aerodynamic particle sizer. The data have been analyzed in order to elucidate factors determining the particle detection efficiencies of the ATOFMS. These are broken down according to the efficiency of the inlet system, the hit efficiency on particles which enter the sensing zone of the instrument and the sensitivity of the measured ion signal to the chemical species. A substantial matrix effect depending on the chemical composition of the aerosol sampled at the time was found, which is reflected in variations in the hit efficiency of particles entering the sensing zone of the instrument with the main desorption-ionization laser. This is in addition to the strong inverse power-law dependence of inlet transmission efficiency on particle diameter. The variation in hit efficiency with particle type is likely attributable to differences in the energetics of laser energy absorption, ablation, and ion formation. However, once variations in both inlet transmission and hit efficiencies are taken into account, no additional matrix dependence of ATOFMS response is required to obtain a linear relationship between the ion signal and the concentration of a particular chemical species. The observations show that a constant mass of material is ionized from each particle, irrespective of size. Consequently the integrated ion signal for a given chemical component and particle size class needs to be increased by a factor related to the cube of particle diameter in order to correlate with the airborne mass of that component.  相似文献   

11.
An aerosol time-of-flight mass spectrometer (ATOFMS) was used to detect trimethylamine (TMA) in 0.52-1.9 μm particles at urban and rural sites in Southern Ontario during the summer and winter of 2007. During the summer, TMA-containing particles were observed exclusively during high relative humidity or fog events at both the urban and rural sites. In the wintertime, greater concentrations of TMA-containing particles were linked to cloud processing of aerosol in air masses originating from over agricultural and livestock areas. A laboratory study revealed that, at high relative humidity (~ 100%), gas phase TMA at concentrations ranging from 2 to 20,000 ppt partitions preferentially to acidic particles present in the ambient air. On the basis of the field and laboratory studies, it appears that gas phase TMA present in ambient air partitions onto pre-existing particles preferentially during periods of acidic cloud/fog processing, leading to the presence of TMA-containing particles in the 0.52-1.9 μm size range.  相似文献   

12.
Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.  相似文献   

13.
Secondary organic aerosol (SOA) constitutes a significant fraction of total atmospheric particulate loading, but there is evidence that SOA yields based on laboratory studies may underestimate atmospheric SOA. Here we present chamber data on SOA growth from the photooxidation of aromatic hydrocarbons, finding that SOA yields are systematically lower when inorganic seed particles are not initially present. This indicates that concentrations of semivolatile oxidation products are influenced by processes beyond gas-particle partitioning, such as chemical reactions and/or loss to chamber walls. Predictions of a kinetic model in which semivolatile compounds may undergo reactions in both the gas and particle phases in addition to partitioning are qualitatively consistent with the observed seed effect, as well as with a number of other recently observed features of SOA formation chemistry. The behavior arises from a kinetic competition between uptake to the particle phase and reactive loss of the semivolatile product. It is shown that when hydrocarbons react in the absence of preexisting organic aerosol, such loss processes may lead to measured SOA yields lower than would occur under atmospheric conditions. These results underscore the need to conduct studies of SOA formation in the presence of atmospherically relevant aerosol loadings.  相似文献   

14.
The formation of organosulfates from the gas-phase ozonolysis of beta-pinene in the presence of neutral or acidic sulfate particles was investigated in a series of indoor aerosol chamber experiments. The organosulfates were analyzed using high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS. Organosulfates were only found in secondary organic aerosol from beta-pinene ozonolysis in the presence of acidic sulfate seed particles. One of the detected organosulfates also occurred in ambient aerosol samples that were collected at a forest site in northeastern Bavaria, Germany. beta-Pinene oxide, an oxidation product in beta-pinene/O3 and beta-pinene/NO3 reactions, is identified as a possible precursor for the beta-pinene-derived organosulfate. Furthermore, several nitroxy-organosulfates originating from monoterpenes were found in the ambient samples. These nitroxy-organosulfates were only detected in the nighttime samples, suggesting a role for nighttime chemistry in their formation. Their LC/MS chromatographic peak intensities suggest that they represent an important fraction of the organic mass in ambient aerosols, especially at night.  相似文献   

15.
In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ~0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ~0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.  相似文献   

16.
Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for β-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.  相似文献   

17.
In this study, 28 light-duty gasoline vehicles (LDV) were operated on a chassis dynamometer at the California Air Resources Board Haagen-Smit Facility in El Monte, CA. The mass spectra of individual particles emitted from these vehicles were measured using aerosol time-of-flight mass spectrometry (ATOFMS). A primary goal of this study involves determining representative size-resolved single particle mass spectral signatures that can be used in future ambient particulate matter source apportionment studies. Different cycles were used to simulate urban driving conditions including the federal testing procedure (FTP), unified cycle (UC), and the correction cycle (CC). The vehicles were selected to span a range of catalytic converter (three-way, oxidation, and no catalysts) and engine technologies (vehicles models from 1953 to 2003). Exhaust particles were sampled directly from a dilution and residence chamber system using particle sizing instruments and an ATOFMS equipped with an aerodynamic lens (UF-ATOFMS) analyzing particles between 50 and 300 nm. On the basis of chemical composition, 10 unique chemical types describe the majority of the particles with distinct size and temporal characteristics. In the ultrafine size range (between 50 and 100 nm), three elemental carbon (EC) particle types dominated, all showing distinct EC signatures combined with Ca, phosphate, sulfate, and a lower abundance of organic carbon (OC). The relative fraction of EC particle types decreased as particle size increased with OC particles becoming more prevalent above 100 nm. Depending on the vehicle and cycle, several distinct OC particle types produced distinct ion patterns, including substituted aromatic compounds and polycyclic aromatic hydrocarbons (PAH), coupled with other chemical species including ammonium, EC, nitrate, sulfate, phosphate, V, and Ca. The most likely source of the Ca and phosphate in the particles is attributed to the lubricating oil. Significant variability was observed in the chemical composition of particles emitted within the different car categories as well as for the same car operating under different driving conditions. Two-minute temporal resolution measurements provide information on the chemical classes as they evolved during the FTP cycle. The first two minutes of the cold start produced more than 5 times the number of particles than any other portion of the cycle, with one class of ultrafine particles (EC coupled with Ca, OC, and phosphate) preferentially produced. By number, the three EC with Ca classes (which also contained OC, phosphate, and sulfate) were the most abundant classes produced by the nonsmoking vehicles. The smoker category produced the highest number of particles, with the dominant classes being OC comprised of substituted monoaromatic compounds and PAHs, coupled with Ca and phosphate, thus suggesting used lubricating oil was associated with many of these particles. These studies show, by number, EC particles dominate gasoline emissions in the ultrafine size range particularlyforthe lowest emitting newer vehicles, suggesting the EC signature alone cannot be used as a unique tracer for diesels. This represents the first report of high time- and size-resolved chemical composition data showing the mixing state of nonrefractory elements in particles such as EC for vehicle emissions during dynamometer source testing.  相似文献   

18.
A recently developed inverse-modeling procedure has been applied to a case study of particle nucleation and growth following alpha-pinene and SO2 oxidation in a smog chamber. With the use of only the measured aerosol size distributions as input, the condensational growth rate is obtained by regression analysis of the general dynamic equation, taking into account coagulation and wall losses. The growth rate provides an indirect measure of the concentration of the condensing species, offset by their vapor pressures. Assuming a particle density of 1.0 g cm(-3), an aerosol yield of 7 +/- 1% is obtained for an initial alpha-pinene concentration of 14 ppbv and a final organic aerosol mass of 4 microg m3. Using the estimated vapor concentration, we show that the time-dependence of the yield is at least partly due to the time needed for condensation. Such a kinetic limitation to secondary organic aerosol formation may have implications for our understanding of gas-particle partitioning. The measured size distributions are also used to determine the empirical nucleation rate; it appears to be enhanced by the presence of organics.  相似文献   

19.
Proton-transfer-reaction mass spectrometry (PTR-MS) is a useful tool in ambient trace gas analysis, especially for the analysis of oxygenated volatile organic compounds (OVOC). Many OVOCs are produced during photooxidation of volatile organic compounds and contribute to both the gas phase and secondary organic aerosols (SOA). The inlet system of the PTR-MS instrument was modified to allow also for the measurement of the particulate phase of an aerosol with a high time resolution. The new inlet consists mainly of a denuder to strip off the gas phase, and a heater (120/150 degrees C) to vaporize the aerosol particles. This inlet system was tested with pinonic acid particles generated with a nebulizer and SOA particles formed during the photooxidation of 1,3,5-trimethylbenzene and alpha-pinene with NO(x) in a smog chamber. The performance of this new technique is discussed and the partitioning coefficients for the oxidation products are estimated.  相似文献   

20.
Simultaneous measurements of the effective density and chemical composition of individual ambient particles were made in Riverside, California by coupling a differential mobility analyzer (DMA) with an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). In the summer, chemically diverse particle types (i.e., aged-OC, vanadium-OC-sulfate-nitrate, biomass) all had similar effective densities when measured during the same time period. This result suggests that during the summer study the majority of particle mass for the different particle types was dominated by secondary species (OC, sulfates, nitrates) of the same density, while only a small fraction of the total particle mass is accounted for by the primary particle cores. Also shown herein, the effective density is a dynamic characteristic of the Riverside, CA ambient aerosol, changing by as much as 40% within 16 h. During the summer measurement period, changes in the ambient atmospheric water content correlated with changes in the measured effective densities which ranged from approximately 1.0 to 1.5 g x cm(-3). This correlation is potentially due to evaporation of water from particles in the aerodynamic lens. In contrast, in the fall during a Santa Ana meteorological event, ambient particles with a mobility diameter of 450 nm showed three distinct effective densities, each related to a chemically unique particle class. Particles with effective densities of approximately 0.27 g x cm(-3), 0.87 g x cm(-3), and 0.93 g x cm(-3) were composed mostly of elemental carbon, lubricating oil, and aged organic carbon, respectively. It is interesting to contrast the seasonal differences where in the summer, particle density and mass were determined by high amounts of secondary species, whereas in the fall, relatively clean and dry Santa Ana conditions resulted in freshly emitted particles which retained their distinct source chemistries and densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号