首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments were performed to study the hydrodynamic characteristics of a cocurrent, gas-liquid-solid fluidized bed containing cylindrical hydrotreating catalysts under conditions of high gas holdup. These conditions were established using an aqueous t-pentanol (0.5 wt. %) solution as the liquid phase in an attempt to simulate reaction conditions for hydrotreating of residual oils and coal liquefaction. Separate three-phase experiments were performed with air and water to investigate the effect of surface tension on hydrodynamic behavior. A mathematical model was developed to describe the minimum fluidization velocity behavior. Bed voidage, gas holdup and terminal velocity of the particles were analyzed and correlated empirically to investigate the effect of particle shape and liquid surface tension. A bubble-wakes interaction coefficient defined by Jean and Fan (1987) was determined for cylindrical particles.  相似文献   

2.
Flow regimes in gas-liquid-solid fluidized beds encountered at different operating conditions, column diameters and particle sizes are classified using a statistical method [Diks, C., van Zwet, W.R., Takens, F., DeGoede, J., 1996. Detecting differences between delay vector distributions. Physical Review E 53, 2169-2176] that allows comparison of the attractors characterizing their dynamics. Time series of the single solid tracer particle positions, obtained by the computed automated radioactive particle tracking (CARPT) technique, are used to reconstruct the attractors for each examined operating condition. The test constitutes a reliable way of objectively diagnosing the flow regime in a three-phase fluidized bed since experiments within the same flow regime have similar dynamical characteristics, while there is a huge hydrodynamic change between experiments carried out in different flow regimes.  相似文献   

3.
There are many techniques to characterize the hydrodynamics of fluidized beds, but new techniques are still needed for more reliable measurement. Bed vibrations were measured by an accelerometer in a gas–solid fluidized bed to characterize the hydrodynamics of the fluidized bed in a nonintrusive manner. Measurements were carried out at different superficial gas velocities and particle sizes. Pressure fluctuations were measured simultaneously. Vibration signals were processed using statistical analysis. For the sake of the evaluation, the vibration technique was used to calculate minimum fluidization velocity. It was shown that minimum fluidization velocity can be determined from the variation of standard deviation, skewness, and kurtosis of vibration signals against superficial gas velocity of the bed. Kurtosis was proved to be a new method of analyzing vibration signals. Results indicate that analyzing the vibration signals can be an effective nonintrusive technique to characterize the hydrodynamics of fluidized beds. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

4.
Computational fluid dynamics (CFD) simulation for bubbling fluidized bed of fine particles was carried out. The reliability and accuracy of CFD simulation was investigated by comparison with experimental data. The experimental facility of the fluidized bed was 6 cm in diameter and 70 cm in height and an agitator of pitched-blade turbine type was installed to prevent severe agglomeration of fine particles. Phosphor particles were employed as the bed material. Particle size was 22 μm and particle density was 3,938 kg/m3. CFD simulation was carried by two-fluid module which was composed of viscosity input model and fan model. CFD simulation and experiment were carried out by changing the fluidizing gas velocity and agitation velocity. The results showed that CFD simulation results in this study showed good agreement with experimental data. From results of CFD simulation, it was observed that the agitation prevents agglomeration of fine particles in a fluidized bed.  相似文献   

5.
A three-phase fluidized bed reactor (TFBR) was developed in this study with the objective to achieve high rates of oxygen transfer from the gas to the liquid phase in the presence of fluidized solid particles. With 2.9 m height, 0.605 m diameter, and a short residence time of 8 h, the TFBR is particularly suitable for industrial applications such as aerobic biodegradation of high-strength wastewaters including refractory compounds. Experiments with tap water and air show that the TFBR enables complete fluidization. With the water and air superficial velocities in the respective ranges of 0.005–0.203 and 0.8–2.0 cm/s, the volumetric oxygen transfer coefficient is 2.3 × 10−2 s−1, which is higher than that obtained in similar experimental studies on oxygen transfer carried out in the past. These results suggest that the developed TFBR could be very effective in industrial applications where short hydraulic time and high gas-to-liquid mass transfer rates are desirable.  相似文献   

6.
Water fluidization in a 210 mm diameter semi-cylindrical acrylic column of a binary solids mixture of 3.2 mm polymer beads (ρs=1280 kg/m3) and 0.385 mm glass beads (ρs=2500 kg/m3) at superficial liquid velocities from 18.1 to 43.1 mm/s is shown to generate layer inversion at a superficial liquid velocity, UL, of 33.1 mm/s. Introduction of air with a superficial velocity, Ug, of 1.92 mm/s yielded a layer inversion velocity at UL=30.4 mm/s. The latter is explainable if it is assumed that the determinant of layer inversion is the interstitial liquid velocity and that therefore the main function of the gas in this respect is to occupy space.Mixing of the binary solids, as quantified by a mixing index applied to measured particle compositions at different levels of the fluidized bed, is shown to be greatest at the layer inversion velocity for liquid fluidization and, in general, to increase as co-current gas flow increases at a fixed value of UL.  相似文献   

7.
Hydrodynamic modeling of a circulating fluidized bed   总被引:1,自引:0,他引:1  
Hydrodynamics plays a crucial role in defining the performance of circulating fluidized beds (CFB). The numerical simulation of CFBs is very important in the prediction of its flow behavior. From this point of view, in the present study a dynamic two dimensional model is developed considering the hydrodynamic behavior of CFB. In the modeling, the CFB riser is analyzed in two regions: The bottom zone in turbulent fluidization regime is modeled in detail as two-phase flow which is subdivided into a solid-free bubble phase and a solid-laden emulsion phase. In the upper zone core-annulus solids flow structure is established. Simulation model takes into account the axial and radial distribution of voidage, velocity and pressure drop for gas and solid phase, and solids volume fraction and particle size distribution for solid phase. The model results are compared with and validated against atmospheric cold bed CFB units' experimental data given in the literature for axial and radial distribution of void fraction, solids volume fraction and particle velocity, total pressure drop along the bed height and radial solids flux. Ranges of experimental data used in comparisons are as follows: bed diameter from 0.05-0.418 m, bed height from 5-18 m, mean particle diameter from 67-520 μm, particle density from 1398 to 2620 kg/m3, mass fluxes from 21.3 to 300 kg/m2s and gas superficial velocities from 2.52-9.1 m/s.As a result of sensitivity analysis, the variation in mean particle diameter and superficial velocity, does affect the pressure especially in the core region and it does not affect considerably the pressure in the annulus region. Radial pressure profile is getting flatter in the core region as the mean particle diameter increases. Similar results can be obtained for lower superficial velocities. It has also been found that the contribution to the total pressure drop by gas and solids friction components is negligibly small when compared to the acceleration and solids hydrodynamic head components. At the bottom of the riser, in the core region the acceleration component of the pressure drop in total pressure drop changes from 0.65% to 0.28% from the riser center to the core-annulus interface, respectively; within the annulus region the acceleration component in total pressure drop changes from 0.22% to 0.11% radially from the core-annulus interface to the riser wall. On the other hand, the acceleration component weakens as it moves upwards in the riser decreasing to 1% in both regions at the top of the riser which is an important indicator of the fact that hydrodynamic head of solids is the most important factor in the total pressure drop.  相似文献   

8.
Gasification is one potential way to use sewage sludge as renewable energy and solve the environmental problems caused by the huge amount of sewage sludge. In this paper, a three-dimensional Computational Fluid Dynamics (CFD) model has been developed to simulate the sewage sludge gasification process in a fluidized bed. The model describes the complex physical and chemical phenomena in the gasifier including turbulent flow, heat and mass transfer, and chemical reactions. The model is based on the Eulerian-Lagrangian concept using the nonpremixed combustion modeling approach. In terms of the CFD software FLUENT, which represents a powerful tool for gasifier analysis, the simulations provide detailed information on the gas products and temperature distribution in the gasifier. The model sensitivity is analyzed by performing the model in a laboratory-scale fluidized bed in the literature, and the model validation is carried out by comparing with experimental data from the literature. Results show that reasonably good agreement was achieved. Effects of temperature and Equivalence Ratio (ER) on the quality of product syngas (H2 + CO) are also studied.  相似文献   

9.
A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid-solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085-0.110 m/s) and two different temperatures (12 and ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.  相似文献   

10.
流态化模拟:基于介尺度结构的多尺度CFD   总被引:2,自引:6,他引:2       下载免费PDF全文
王维  洪坤  鲁波娜  张楠  李静海 《化工学报》2013,64(1):95-106
介尺度结构是研究气固流态化多尺度行为的关键。传统的基于平均化处理方式的双流体模拟不能准确描述流化床中的多尺度流动和传递行为。相较而言,基于能量最小多尺度(EMMS)方法的结构多流体模型(SFM)基于局部空间(网格)内的非均匀介尺度结构流动特征,其宏观预测结果与网格分辨率基本无关,因而可以大幅降低模拟计算量。基于SFM模拟得到的流动结构,EMMS多尺度传质模型进一步成功解释了传统传质文献中的数据差异。集成上述模型,形成了一整套模拟流化床流动-传递-反应耦合过程的多尺度计算流体力学(CFD)方法,并将其应用于预测循环流化床中典型的S型轴向分布、揭示噎塞转变的机理以及流化床放大困难的原因。多尺度CFD使工业规模循环床的三维、全系统、动态流动-反应耦合过程的准确模拟成为可能,并为实现从模拟向实时虚拟过程转变的目标打下基础。  相似文献   

11.
In computational fluid dynamics modelling of gas–solid two phase flow, drag force is one of the dominant mechanisms for interphase momentum transfer. Despite the profusion of drag models, none of the available drag functions gives accurate results in their own original form. In this work the drag correlations of Syamlal and O'Brien (Syamlal and O'Brien, Int. J. Multiphase Flow. 1988; 14(4):473–481), Gidaspow (Gidaspow, Appl. Mech. Rev. 1986; 39:1–23), Wen and Yu (Wen and Yu, Chem. Eng. Prog. Symp. Ser. 1966; 62(2):100–111), Arastoopour et al. (Arastoopour et al., Powder Technol. 1990; 62(2): 163–170), Gibilaro et al. (Gibilaro et al., Chem. Eng. Sci. 1985; 40:1817–1823), Di Felice (Di Felice, Int. J. Multiphase Flow. 1994; 20(1):153–159), Zhang‐Reese (Zhang and Reese, Chem. Eng. Sci. 2003; 58(8):1641–1644) and Hill et al. (Hill et al., J. Fluid Mech. 2001; 448:243–278) are reviewed using a multi‐fluid model of FLUENT V6.3.26 (FLUENT, 2007. Fluent 6.3 User's Guide, 23.5 Eulerian Model, Fluent, Inc.) software with the resulting hydrodynamics parameters being compared with experimental data. The main contribution of this work is to propose an easy to implement and efficient method for adjustment of Di Felice drag law which is more efficient compared to the one proposed by Syamlal‐O'Brien. The new method adopted in this work showed a quantitative improvement compared to the adjusted drag model of Syamlal‐O'Brien. Prediction of bed expansion and pressure drop showed excellent agreement with results of experiments conducted in a Plexiglas fluidized bed. A mesh size sensitivity analysis with varied interval spacing showed that mesh interval spacing with 18 times the particle diameter and using higher order discretization methods produces acceptable results.  相似文献   

12.
气固搅拌流化床压力脉动的小波分析   总被引:5,自引:4,他引:1       下载免费PDF全文
王嘉骏  张文峰  冯连芳  顾雪萍 《化工学报》2006,57(12):2854-2859
在内径188 mm、静床高400 mm的搅拌流化床中,采用Geldart D类颗粒为实验物料,通过小波分析研究了不同气速和搅拌桨转速下搅拌流化床的压力脉动行为.实验发现,搅拌桨的转动作用促使在普通流化床中不易散式流态化的D类颗粒形成了散式流态化.随着气速的增加,第1尺度的小波能量特征值在某一个气速范围内发生急剧变化,进而提出了将该气速范围的下限和上限分别定义为临界鼓泡速度和充分鼓泡速度的判据.随搅拌转速的增加,散式流态化的气速操作范围线性增加.在鼓泡流态化状态下,气速是流化床气泡行为的主导因素,搅拌桨转速的增加对气泡产生的频率无明显影响但可使气泡的直径变小.  相似文献   

13.
Characteristics of pressure fluctuations and bubble size were investigated in the riser of a three-phase circulation fluidized bed bioreactor with viscous liquid medium, whose diameter is 0.102 m (ID) and 3.5 m in height. Effects of gas (0.01–0.07 m/s) and liquid (0.17–0.23 m/s) velocities and liquid viscosity (0.96–38 mPa·s) on the bubble size in the riser were examined. The bubbling phenomena in the bioreactor with viscous liquid medium were interpreted effectively by measuring and analyzing the pressure fluctuations by adopting chaos theory. The bubble size increased with increasing gas velocity or liquid viscosity, but decreased with increasing liquid velocity. The bubbling phenomena became more complicated and bubble size distribution tended to broad, with increasing gas velocity or liquid viscosity. The bubble size was well correlated in terms of correlation dimension of pressure fluctuations as well as dimensionless groups within these experimental conditions.  相似文献   

14.
The effects of liquid and gas velocities, particle size and volume ratio of floating bubble breakers to solid particles (Vf/Vs) on both the volumetric mass transfer coefficient, kla, and the gas-liquid interfacial area, a, have been determined in three-phase fluidized beds with floating bubble breakers. Beds having a volume ratio (Vf/Vs) of about 0.15 showed a maximum increase in both kla and a of about 30% in comparison to that in the corresponding bed without floating bubble breakers. The volumetric mass transfer coefficient in three-phase fluidized beds with or without floating bubble breakers can be estimated from the surface renewal frequency of liquid microeddies and the particle size.  相似文献   

15.
应用基于颗粒动力学理论的欧拉-欧拉模型,模拟了不同表观气速下的气固密相流化床,测定了冷模流化床中压力脉动沿床高的变化,将CFD模拟与实验得到的床层压力分布及压力脉动频谱图相对照,验证了数值模拟方法的正确性。采用统计分析的手段对模拟得到的颗粒温度时间序列进行研究,结果表明,随着表观气速的增加,颗粒温度增大,颗粒温度时间序列的标准偏差增大,平坦度基本不变。将声能量理论与颗粒温度相结合并比照声能量沿床高的变化趋势,发现颗粒温度、颗粒温度时间序列的标准偏差及平坦度可用于确定颗粒运动“滞留区”的位置。引入颗粒温度谱,并根据脉动能的级串理论将颗粒温度谱划分为含能尺度、惯性尺度和耗散尺度,发现颗粒温度谱在惯性尺度内普遍偏离Kolmogorov-5/3定律而趋向符合Levy-Kolmogorov定律。在Levy-Kolmogorov定律的适用范围内,“滞留区”的颗粒温度谱衰减指数达到最大值,据此提出颗粒温度谱的衰减指数具有表征“滞留区”位置的潜力。  相似文献   

16.
This article presents a 3D full-loop computational fluid dynamics (CFD) simulation of a circulating fluidized bed gasifier (CFBG). The simulation results are validated against the experimental data and found to be in good agreement. Thereupon, the effect of the process parameters, ie, temperature, pressure, air/coal (A/C) ratio, and steam/coal (S/C) ratio, on the performance of the gasifier is analyzed. The effect of temperature on the hydrodynamics was found to be small. The CO and H2 increase, whereas the CO2 and H2O decrease with an increase in temperature. While the effect of pressure on the outlet species mole fraction is negligible, the gas and solid axial velocity decrease with an increase in pressure. With an increasing A/C ratio or decreasing S/C ratio, the combustion products (CO2 and H2O) increase, whereas the gasification products (CO and H2) decrease due to the increase in the O2 concentration. In addition, temperature increases with an increase in the A/C ratio or a decrease in the S/C ratio. The feed velocity increases with an increasing A/C or S/C ratio, and, accordingly, the pressure increases and bed height decreases. The CH4 decreases in all of the cases as it is being consumed in gasification as well as combustion reactions.  相似文献   

17.
A Computational Fluid Dynamics (CFD) model based on porous media concept is presented to model the hydrodynamics of two-phase flow in trickle-bed reactors (TBRs). The aim of this study is to develop a comprehensive CFD based model for predicting hydrodynamic parameters in trickle-bed reactors under cold-flow conditions. The two-phase Eulerian model describing the flow domain as a porous region has been used to simulate the macroscale multiphase flow in trickle beds operating under trickle flow regime using FLUENT 6.2 software. The closure terms for phase interactions have been addressed by adopting the relative permeability concept [Sàez, A.E., Carbonell, R.G., 1985. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. A.I.Ch.E. Journal 31, 52-62]. The model has been evaluated by comparing predictions with the data (collected under a varied set of laboratory conditions) available in the open literature. It is shown that while being relatively simple in structure, this CFD model is flexible and predictive for a large body of experimental data presented in the open literature.  相似文献   

18.
The effect of 50.8 mm diameter disc shaped mobile internals (MIs) on gas-solid contacting was studied in a large two-dimensional fluidized bed by means of non-reactive tracers. MIs were found to improve substantially the mass transfer coefficient between the bubble and dense phases. However, they also increased the gas dispersion in the dense phase.  相似文献   

19.
为了进一步丰富和发展大颗粒流态化理论,促进其在水泥煅烧领域的应用,实验通过1个三维流化床试验台研究了大颗粒流化床中颗粒的破损方式为磨蚀,即颗粒在流化过程中表面磨碎后生成细粉,颗粒自身的粒径逐渐变小。实验表明,颗粒粒径、风速以及流化时间对大颗粒流化床中颗粒的磨蚀影响较大,静床高对磨蚀几乎没有影响。最后提出了大颗粒流化床合适的控制参数:粒径范围4—7 mm,表观风速1.3um f—1.6um f,静床高H0/D<2。  相似文献   

20.
Hydrodynamic studies were conducted in gas-liquid-solid systems (0.1 m ID, 2 m high) of 3.0 mm glass beads and of 2.1 mm polypropylene low-density particles, with particles densities of 2471 and 1290 kg/m3, respectively. Simultaneous measurement of differential pressure and bubble conductivity probe signals sampled at 500 Hz for 60 s enabled the investigation of the change in flow structure in relation to the flow regime transitions. Superficial gas velocities ranged between 0.010 and 0.052 m/s for polypropylene particles, and extended to 0.12 m/s for glass beads, while the superficial liquid velocities covered the ranges of 0.0007-0.045 m/s for polypropylene particles, and ranged up to 0.056 m/s for glass beads.Spectral analysis of the pressure fluctuations revealed a transition from dispersed to coalesced bubbling flow with decreasing liquid velocity for a given superficial gas velocity. The use of a conductivity probe facilitated characterization of the local flow structure in terms of bubble movement. The measurements were extensively analyzed using fractals and chaos, power spectra frequency analysis and wavelet decomposition in addition to the standard statistical analyses. The coefficient of variation of the bubble probe signals was found to be the most effective in deducing the transition velocity between coalesced and dispersed bubbling flow regimes, while wavelet energy confirmed the similarity in the distribution between two axial positions once operated in the dispersed flow regime. Comparison of the flow structure between glass beads and polypropylene particles showed that both the minimum liquid fluidization velocity and the transition velocity between the bubble flow regimes were much higher for the glass beads than for the lighter polypropylene particles. Furthermore, the standard deviations of the decomposed bubble probe signals through wavelet transformation successfully highlighted the difference between the two systems of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号