首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Microstructures of ZrB2 ceramics consolidated by hot-pressing and spark plasma sintering were investigated by transmission electron microscopy (TEM), combining energy dispersive X-ray spectroscopy (EDX). The microstructures of both ceramics were compared. Amount of impurities was lower for ZrB2 consolidated by spark plasma sintering than for hot-pressed ZrB2. In particular, oxygen impurity was not detected even at the grain-boundaries in ZrB2 consolidated by spark plasma sintering. The cleaning effect generated on the powder surfaces during spark plasma sintering cycle was displayed. In addition, dislocations were present only in the spark plasma sintered ZrB2 ceramic, as a result of localized high stresses.  相似文献   

2.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   

3.
Transmission electron microscopy has been used to characterize dispersions of molybdena and vanadia on titania and silica supports. When silica spheres of controlled morphology were used as support, the dispersed monolayer phase of both oxides could be imaged due to characteristic changes in contrast. In addition to the dispersed phase, we could detect three-dimensional crystallites of V2O5 but in the case of MoO3 only two-dimensional islands were seen. On Degussa P-25 titania, there was no observable contrast change due to the presence of a monolayer of these dispersed oxides. However, exposure to the electron beam caused dramatic changes in the surface texture of the support. Such changes were not seen when blank TiO2 was similarly irradiated. These e-beam induced changes were more pronounced in the vanadia/titania catalysts leading to formation of 1–3 nm clusters of reduced VO x . However, on the MoO3/TiO2 sample, e-beam exposure caused only a pronounced change in texture but no well defined clusters could be detected.  相似文献   

4.
O.C. Carneiro  R.T.K. Baker 《Carbon》2005,43(11):2389-2396
The growth of carbon nanofibers from Fe-Cu catalyzed decomposition of CO/C2H4/H2 mixtures at temperatures over the range 500-650 °C has been investigated. Based on analysis of the gas phase and solid products it is apparent that co-adsorption of CO and C2H4 induces major perturbations in the surfaces of the bimetallic catalyst particles. These features are reflected in an increase in the yield of solid carbon and subtle changes in the structural characteristics of the carbon nanofibers. Optimum performance with respect to the yield of carbon nanofibers is found for iron-rich particles treated in CO/C2H4/H2 (1:3:1) at 600 °C. Deactivation of the catalyst is observed to occur with high Cu concentrations and at reaction temperatures in excess of 600 °C. It is suggested that under these conditions the surface of the particles in contact with the reactant gas mixture become enriched in Cu, which does not possess the ability to dissociatively chemisorb either CO or C2H4.  相似文献   

5.
Yi Li  Xiangfeng Jia  Weimin Liu 《Carbon》2006,44(5):894-899
Cyclic voltammograms (CVs) of C60 films and C60 embedded in cast films of triple-tailed cationic surfactant solutions and salt-free zero-charged cationic/anionic (catanionic) surfactant vesicles on glassy carbon electrode in a typical room-temperature ionic liquid (RT-IL), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), were examined. CVs show typically electrochemical oxidation and reduction. The salt-free zero-charged catanionic surfactant bilayer vesicles were determined by freeze-fracture transmission electron microscopy (FF-TEM) images and small-angle X-ray scattering (SAXS) measurements. The cast films of the salt-free zero-charged catanionic surfactant vesicles incorporated C60 molecules were employed to study the electrochemical properties in RT-ILs, which would open new fields for the bulk electronic properties of fullerenes or their derivatives in ionic liquids.  相似文献   

6.
In-situ synthesis of dense near-single phase Ti3SiC2 ceramics from 3Ti/SiC/C/0.15Al starting powder using spark plasma sintering (SPS) at 1250 °C is reported. Systematic analysis of the phase development over a range of sintering temperatures (1050–1450 °C) suggested that solid state reactions between intermediate TiC and Ti5Si3 phases lead to the formations of Ti3SiC2. The effect of starting powder composition on phase development after SPS at 1150 °C was also investigated using three distinct compositions (3Ti/SiC/C, 2Ti/SiC/TiC, and Ti/Si/2TiC). The results indicate that the starting powder compositions, with higher amounts of intermediate phase such as TiC, favor the formation of Ti3SiC2 at relatively lower sintering temperature. Detailed analysis of wear behavior indicated that samples with higher percentage of TiC, present either as an intermediate phase or a product of Ti3SiC2 decomposition, exhibited higher microhardness and better wear resistance compared to near single phase Ti3SiC2.  相似文献   

7.
The effects of TaSi2 addition on the room temperature mechanical properties of ZrB2–20SiC (volume fraction, %) composite were investigated. Dense ZrB2–20SiC-xTaSi2 (x?=?3, 6, 10) composites were prepared by hot pressing the mixture of ZrB2, SiC and TaSi2 powders at 1850–1900?°C under 30?MPa in flowing Ar. In the as-prepared composites, apart from ZrB2, SiC and TaSi2, (Zr,Ta)B2 solid solution also existed around ZrB2 grains. It became a continuous layer and the thickness increased gradually with the increase of TaSi2 content. When the addition of TaSi2 was within the range of 3–10%, Vickers hardness of ZrB2–20SiC reduced slightly by about 1–2?GPa, but the flexural strength and fracture toughness increased simultaneously by more than 35%. These phenomena could be attributed to the relatively low hardness of TaSi2, and the decrease of ZrB2 grain size as well as the presence of a continuous (Zr,Ta)B2 solid solution layer around ZrB2 grains.  相似文献   

8.
C. van Gulijk  K.M. de Lathouder 《Carbon》2006,44(14):2950-2956
The use of selected area electron diffraction and centered dark field imaging using a transmission electron microscope is demonstrated for studying the herringbone structure of carbon nanofibers (CNFs). The experimental method is described and illustrated with CNFs that were grown via a chemical vapor deposition method with a nickel catalyst. It is demonstrated that this method gives the angle of the herringbone with great accuracy and gives insight into the uniformity of graphitic elements in the herringbone structure. It was found that the Ni catalyst could be removed from the fiber-tips by treatment in HNO3, without affecting the carbon structure. These electron microscopy results were confirmed by XRD. The parameters that can be determined by application of this characterization method are expected to be useful to study and optimize growth conditions for carbon nanofibers grown by chemical vapor deposition.  相似文献   

9.
Powders of Al4C3 and SiC were combined by high-energy milling to produce Al4SiC4, Al4SiC4 + 30 vol.% TiC, and Al4SiC4 + 30 vol.% WC. Five different temperatures were used to hot press the constituents. XRD, SEM, relative density, and hardness measurements showed that formation of single-phase Al4SiC4 occurred at 1450 °C and full densification (99%) was achieved at 1500 °C. Both of these temperatures are lower than previously reported. Adding TiC and WC increases hardness, while WC improves densification (99.5%).  相似文献   

10.
The interaction of a main-chain viologen polymer containing bromide as counterions with water and aqueous potassium bromide over a broad range of concentrations was studied with isothermal titration calorimetry. The dilution process of this polymer was endothermic as opposed to flexible poly(sodium acrylate) and poly(sodium styrenesulfonate). This result may be related to the different mechanism of hydration of pyridinium and bromide groups in the main chain. It also exhibited aggregation phenomenon in both water and aqueous potassium bromide solutions as detected by transmission electron microscopy like other flexible and rigid-rod polyelectrolytes. As the polymer concentrations in aqueous solutions increase, the aggregated polymer exhibited more defined ordered structures than random structures observed at low polymer concentrations. Field emission scanning electron microscopy also revealed the effect of variation of concentration of aqueous potassium bromide on the morphology of the polymer matrix. At increasing concentrations of aqueous potassium bromide, the polymer structures became more ordered than those in low concentrations.  相似文献   

11.
Optical microscopy has been a useful technique for visualizing aqueous dispersions, but it lacks the high resolution available with transmission electron microscopy (TEM). In order to withstand the vacuum of the electron microscope, water-based systems must be either dried or frozen, but this distorts morphology. The ultra-rapid freezing technique can be used in such studies to preserve microstructure and also be compatible with the vacuum of the electron microscope. Also known as cryo-TEM, this technique has been used in coatings research to visualize the morphologies of a variety of aqueous dispersions. Besides being consistent with what we already know optically, these complementary techniques of ultra-rapid freezing and transmission electron microscopy now permit us a unique view of fluid microstructure far below the limit of optical microscopy.  相似文献   

12.
Abstract

A morphological study was conducted on ternary systems containing epoxy, poly(methyl methacrylate) grafted natural rubber and organic chemically modified montmorillonite (Cloisite 30B), using TEM. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 30B nanocomposites and cured toughened epoxy/Cloisite 30B nanocomposites. Mixing process was performed by mechanical stirring. Poly(etheramine) was used as the curing agent. The detailed TEM images revealed cocontinuous and dispersed spherical rubber in the epoxy–rubber blend, suggesting a new proposed mechanism of phase separation. High magnification TEM analysis showed good interactions between rubber and Cloisite 30B in the ternary system. In addition, it was found that rubber particles could enhance the separation of silicate layers.  相似文献   

13.
Preparation and characterization of CNTs-TiO2 composites   总被引:1,自引:0,他引:1  
Carbon nanotubes-based TiO2 composites were fabricated by hydrolysis, and the transmission electron microscopy(TEM) results showed that carbon nanotubes were partly coated with TiO2. X-ray photoelectron spectroscopy (XPS) results of purified carbon nanotubes indicated that there were some polar oxygenated groups such as C-O, C=O and O-C=O which might stimulate formation of the composites, and enhance the interfacial combination of TiO2 with carbon nanotubes. The formation of TiO2 and its compounding with CNTs happened almost simultaneously in this process. The method is a convenient route to fabricate CNTs-based TiO2 composites with different ratios.  相似文献   

14.
Hundred nanometers outer diameter multi-walled carbon nanotubes have been used as suitable host template for synthesizing CoFe2O4 nanowires encapsulated inside nanotubes under mild conditions, i.e. 100 °C and atmospheric pressure, with a high filling yield of the nanotubes, using an aqueous nitrate precursor solution and the confinement effect provided by the surrounding walls. The formation of caps near the tube tips at the beginning of the nitrate decomposition led to consider each nanotube as a closed nanoreactor, in which the reaction conditions could be far different from the macroscopic conditions outside the tube. The structure of the CoFe2O4 nanowires could be continuously changed from a disordered hair-like dendritic structure at 100 °C to highly crystallized domains when increasing the temperature. A material with high coercivity at room temperature for small particles of about 25 nm in diameter was obtained by submitting the nanowires to an Ar treatment at 550 °C for 2 h.  相似文献   

15.
The structure of carbon nanospheres of 100-200 nm diameter, which showed superior high-speed charge-discharge behavior as the negative electrode in a lithium ion battery, was investigated with XRD, SEM and TEM with an electron tomography attachment. Observation of carbon 0 0 2 lattice images, as well as electron diffraction patterns, illustrated that heterogeneous microtexture was formed as the polyhedronization of the particle proceeded with heat-treatment. The outside region of the particle heat-treated at 2800 °C has stacking structure of aromatic layers with some distribution of d002, while the center region consisted of non-graphitic. Structure defects seemed to be concentrated along the ridgelines of the polyhedronized particles after heat-treatment. The electron tomography technique clarified the morphology of the graphitized particles, although the images should be understood with other crystallographic measurements. A slice image computed in the 3D-reconstruction process showed the inner texture of the graphitized particles more clearly than the conventional TEM bright-field image.  相似文献   

16.
Single-phase polycrystalline Mo2BC ceramic bulks were synthesized successfully from molybdenum, boron, and graphite powders using the spark plasma sintering method. Herein, it was established that the synthesis temperature of the Mo2BC ceramic could be as low as 1300 °C. Transmission electron microscopy (TEM) characterization confirmed that the crystal structure of the Mo2BC ceramic was comparable to that of the MoAlB ceramic. The Vickers hardness of the Mo2BC ceramic was measured to be 18.1 GPa. Additionally, the compressive strength, flexural strength, and fracture toughness were determined to be 1.74 GPa, 457.72 MPa, and 3.26 MPa· m1/2, respectively. The Mo2BC bulk exhibited typical brittle features, in which intergranular and transgranular fractures were the main failure modes.  相似文献   

17.
The modification of activated carbon fibres prepared from a commercial textile acrylic fibre into materials with monolithic shape using phenolic resin as binder was studied. The molecular sieving properties for the gas separations CO2/CH4 and O2/N2 were evaluated from the gas uptake volume and selectivity at 100 s contact time taken from the kinetic adsorption curves of the individual gases. The pseudo-first order rate constant was also determined by the application of the LDF model. The samples produced show high CO2 and O2 rates of adsorption, in the range 3-35 × 10−3 s−1, and in most cases null or very low adsorption of CH4 and N2 which make them very promising samples to use in PSA systems, or similar. Although the selectivity was very high, the adsorption capacity was low in certain cases. However, the gas uptake in two samples reached 23 cm3 g−1 for CO2 and 5 cm3 g−1 for O2, which can be considered very good. The materials were heat-treated using a microwave furnace, which is a novel and more economic method, when compared with conventional furnaces, to improve the molecular sieves properties.  相似文献   

18.
This study aimed to improve the purity and performance of alumina ceramics used as ball milling media. High-alumina ceramics (>?96?wt% Al2O3), with high densification and excellent abrasion resistance, were fabricated by the cold isostatic pressing method. The effects of adding the rare earth Tb4O7 on the densification, abrasion resistance, crystalline phase, micro-morphology and grain size of the ceramics were studied. The experiment results showed that the densification and abrasion resistance of the samples increased with Tb4O7 addition. The sample with 0.8?wt% Tb4O7 sintered at 1625?°C exhibited the best performance, with a linear shrinkage, relative density and abrasion rate of 22.28%, 95.70% and 0.103‰, respectively. The abrasion resistance improved by 27.5% compared with the sample without Tb4O7. X-ray diffraction analysis indicated that the primary phases of the samples were corundum, spinel, CaAl12O19 and α-quartz, and a small quantity of Tb3Al5O12 was generated when more than 0.4?wt% Tb4O7 was added. Furthermore, some Mg2+ and Ca2+ ions in the liquid phases dissolved into Tb3Al5O12 crystalline grains during the sintering process, which enhanced the grain boundary cohesion of the materials. Scanning electron microscopy indicated that the existence of Tb3Al5O12 at grain boundaries reduced the average size of the corundum grains. This helped transform inter-granular fractures into trans-granular fractures, thereby improving the abrasion resistance of the ceramic materials.  相似文献   

19.
Various multi-walled nanotubes in the B–C–N system are thoroughly investigated using a JEOL-3100FEF high-resolution field emission transmission electron microscope operating at 300 kV and equipped with an in-column built Omega filter. Spatially-resolved B, C and N elemental maps of the nanotubes are constructed. It is realized that a wide variety of tubular arrays composed of B, C and N atoms may exist in the system. Sandwich-like BN-rich and C-rich alternating tubular shells, graphitic C layers inside and outside of pure BN shells induced either by surface contamination, or electron beam irradiation, separation of C-rich and BN-rich tubes and/or BN particles within tubular bunches may take place. One should carefully take these effects into account while analyzing nanotube physical properties, e.g., electrical or optical, rather than simply rely on electron energy loss spectra typically collected from B, C and N containing nanostructures as a whole. Striking dependence of an individual nanotube electrical conductivity on tubular shell chemistry is demonstrated using IV curve recording in an atomic force microscope.  相似文献   

20.
Annealing in oxygen-rich atmosphere at temperatures between 400° and 600°C is an important step in the manufacture of superconducting YBa2Cu3O7-δ. The symmetry of the orthorhombic phase requires that if more than one type of twin plane is present within a grain, a distorted region should exist inside the multiple twinned grain. This distorted region hinders the tetragonal-to-orthorhombic transformation and may account for some retained tetragonal phase inside an otherwise orthorhombic grain. A physical model is presented describing the formation of such regions and their eventual transformation into low-angle grain boundaries after long annealing. Extended annealing at intermediate temperatures apparently leads to the formation of planar faults in off-stoichiometric samples. Transmission electron microscope image contrast and energy dispersive X-ray analyses of highly defective regions suggest these defects are CuO x ( x = 1, 2) extra layers. These extra layers tend to form near grain boundaries or free surfaces, where oxygen is readily available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号