首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a simple and efficient monitoring system based on a single-drive interleaved electrode impedance technique that provides cross-sectional images for real-time detection of fouling in oil–water flows. The simple monitoring method is proposed using a data-interface formula relating between voltage differences measured at sensing electrodes and interfaces of the two immiscible fluids in a pipeline. We estimate the minimum distance between the interface and pipe wall at the images, that is an indicator for monitoring the fouling, by using a voltage–distance map. The robustness of the proposed method is validated through various numerical simulations including oil–water flows in an U-bend return pipe.  相似文献   

2.
结合静电和电容传感技术各自的特点,提出了阵列式静电-电容传感器用于气固两相流中固相颗粒的局部速度、局部浓度以及局部流量测量。利用静电极片阵列与电容极片阵列获取管道内颗粒的速度分布与浓度分布,进而计算出颗粒的局部流量。该阵列式传感器参数测量的准确性直接取决于它的空间灵敏度分布特性。对静电极片阵列和电容极片阵列的灵敏度特性进行了研究。首先,建立了静电极片阵列的三维静电场模型,通过有限元法分析静电极片阵列的结构参数(电极长度、电极覆盖角等)对传感器灵敏度特性的影响;然后根据电磁场理论建立电容极片阵列的数学模型,并对其进行数值计算,研究管道厚度、管道介电常数、电极覆盖角等参数对传感器灵敏度特性的影响;最后搭建了传动带装置进行了实验研究,实验结果证实了模拟结果的准确性,为阵列式静电-电容传感器的优化设计提供理论依据。  相似文献   

3.
针对大尺寸螺旋焊管周长在线检测的难题,提出了一种基于CCD激光测微传感器的技术方案.该方案利用4组CCD测微传感器对螺旋焊管截面2个正交外径进行数据采集,结合螺旋焊管卷焊速度,构造截面点坐标,通过最小二乘椭圆算法对焊管截面圆进行拟合,计算出截面椭圆的周长,作为该段螺旋焊管中心截面周长的最优估计值.搭建了一套实验系统,对...  相似文献   

4.
Electrical capacitance tomography (ECT) is known as an imaging technique for dielectric permittivity imaging. A novel ECT sensor model at a high excitation frequency is proposed to examine the capability of the ECT system to image both conductivity and permittivity contrasts. The proposed model uses a complex impedance forward model for the ECT system. This new model indicates that in higher excitation frequency both conductive and dielectric imaging may be feasible. Normally, capacitance tomography is designed for the measurements of imaginary part and resistance tomography is used to take the measurements of real part. The drawback of a typical capacitance tomography at a low excitation frequency, such as 200 kHz is that it cannot be used to measure the conductive phase of a conductive/dielectric mixed fluid, e.g. the gas/water flow. By increasing the excitation frequency, the capacitive impedance of the conductive material decreases and dielectric phenomena of the conductive fluid dominates so that it is possible to use capacitance tomography to characterise the dielectric/conductive flows. This paper presents a development of capacitance tomography with a high excitation frequency in measuring the gas/liquid mixture i.e. gas/water and gas/oil multiphase distributions. Both theoretical and experimental results are presented to verify this feasibility study.  相似文献   

5.
A new technique development for high spatial and temporal resolution film-thickness measurement in oil-water flow is presented in this work. A capacitance measurement system is proposed to measure thin water films or local water fractions near to the pipe wall. The measurement system is based in a planar sensor which is flexible and can be placed close to and following the curvature of the inner wall of the tube. Experimental results of the capacitive technique showed that the system is able to measure film thickness between 400 μm and 2200 μm. Dispersed and core-annular flows were studied in a vertical 12-m-height glass pipe with 50.8 mm of internal diameter, using mineral oil (860 kg/m3 of density and 220 mPa s of viscosity) and tap water. Local time-domain signals and axial and circumferential distributions of water film thickness near to the pipe wall and 3-D images of water film are presented. The measured film thickness, obtained by the proposed technique, was compared with that obtained through a camera-based imaging technique and the agreement was good, with a deviation less than 20%. The new technique allows the observation and characterization of average interfacial topologies in separated flows, and high frequency phenomena related to dispersed flows that occur in liquid-liquid flow near the pipe wall.  相似文献   

6.
This paper described a measurement system for mass flow measurement of pulverized coal in a blast furnace coal injection system. The system mainly consists of a volumetric concentration sensor and a velocity sensor. The concentration sensor is a capacitance sensor which has two pairs of concave electrodes placed axially on a piece of pipe of oxide of aluminum with different orientation to get being less affected by flow regime; the velocity sensor is also based on capacitance sensing principle, but uses “passing time difference method” which records the time at which each flowing cloud of coal powder passes through upstream and downstream sensor and then calculates the time difference to get the transit time for the cloud to travel between the two sensors. Both of the experiments in the laboratory and on the spot showed the measurement system has industrially acceptable performance.  相似文献   

7.
介绍了一种新型差动电容式传感器及其构成的控制系统。这种传感器由两片固定金属极板和一片可动极板形成差动式电容结构,在微小偏移作用下,通过动极板引起极板之间电容参数值的变化,进而实现对卷绕机微小偏移量的测量和控制。该控制系统结构简单,反应迅速,能够较好地应用于卷绕机纠偏装置中。  相似文献   

8.
This paper describes an electromagnetic flow meter for velocity profile measurement in single phase and multiphase flows with non-uniform axial velocity profiles. A Helmholtz coil is used to produce a near-uniform magnetic field orthogonal to both the flow direction and the plane of an electrode array mounted on the internal surface of a non-conducting pipe wall. Induced voltages acquired from the electrode array are related to the flow velocity distribution via variables known as ‘weight values’ which are calculated using finite element software. Matrix inversion is used to calculate the velocity distribution in the flow cross section from the induced voltages measured at the electrode array. This paper presents simulations and experimental results including, firstly the effects of the velocity profile on the electrical potential distribution, secondly the induced voltage distribution at the electrode pair locations, and thirdly the reconstructed velocity profile calculated using the weight values and the matrix inversion method mentioned above. The flow pipe cross-section is divided into a number of pixels and, in the simulations, the mean flow velocity in each of the pixels in single phase flow is calculated from the measured induced voltages. Reference velocity profiles that have been investigated in the simulations include a uniform velocity profile and a linear velocity profile. The results show good agreement between the reconstructed and reference velocity profiles. Experimental results are also presented for the reconstructed velocity profile of the continuous water phase in an inclined solids-in-water multiphase flow for which the axial water velocity distribution is highly non-uniform. The results presented in this paper are most relevant to flows in which variations in the axial flow velocity occur principally in a single direction.  相似文献   

9.
In this study, we developed an effective nonattached, noncontact technique for measurement of the human heartbeat. This method detects the human heartbeat by measuring the current generated by variations in the capacitance between a given electrode and the human body. An electrode is placed a few centimeters from the subject's chest, and the electrostatic induction current (on the order of picoamperes) flowing through the electrode is then detected. We propose an occurrence model for the electrostatic induction current generated by variations in the electrostatic capacitance generated because of the human heartbeat, with respect to a given measurement electrode. Furthermore, we compared waveforms of the human heartbeat simultaneously obtained by using conventional electrocardiography (ECG) and our proposed electrostatic induction method. The waveform obtained using the proposed method had the same cycle as that obtained using conventional ECG. This confirms that we can detect the human heartbeat under nonattached, noncontact conditions.  相似文献   

10.
A single-wire capacitance sensor can be used to measure the interface level of a conductive liquid in a stratified multiphase flow. This type of capacitive sensor uses the conducting core in an insulated wire as its first electrode, and the conductive fluid as its second electrode, separated by the wire insulation, producing a coaxial capacitor with a variable electrode length linearly correlated to the liquid level. Therefore in theory, there should be a linear relationship between the liquid level and measured capacitance value. However, at low liquid levels, the authors have observed a noticeable departure from the theoretical correlation in the way of an upward offset. The cause for such a departure is investigated by means of a simplified model geometry and attributed to an additional capacitance between the wire conductor and conductive plane provided by the liquid interface. Analytical and numerical modelling have been carried out to better understand this effect. Recommendations are given on how to correct it.  相似文献   

11.
Electrical capacitance tomography offers a non-intrusive technique for on-line visualisation of two-phase liquid–liquid flows. It has been applied on a facility which provides metered flows of water and kerosene to a test section at the start of which they pass through a dispersing multi-hole orifice plate. The test section consists of a sudden expansion with an internal diameter of 63 mm inlet and 100 mm outlet and which can be inclined. Beyond this the mixture is separated into the two constituents and returned to their individual tanks. Tomography measurements were made using a PTL-300 electronic system coupled to a 12-electrode sensor which was built in-house. The sensor is fitted on the outside of one of the plastic pipe lengths of the test section. By varying the input oil fractions from 20% to 70%, using mixture velocities of 0.2, 0.3, and 0.4 m/s and positioning the pipe at angles of +6,+3,0, −4 and −7 to the horizontal, different flow patterns were established in the test section. A specially developed calibration method is used in all experiments and tomographic images of the stratifying liquid–liquid flow were obtained. These images show clearly that the spatial distribution in a pipe cross-section is strongly dependent on the mixture velocity and the distance from expansion in the range studied. Concave interfaces were observed in horizontal and downward inclination flow for all cases while convex interfaces were identified only in an upward inclination flow at the high input oil fractions and high mixture velocities. This application illustrates very clearly the capability of the ECT for on-line imaging of liquid–liquid two-phase flows.  相似文献   

12.
In this paper, an instrumentation system for the measurements of local solid volumetric concentration, local solid velocity, local solid mass flowrate and solid mass flowrate in gas-solid two-phase flow system is developed. It is based on a new type of a Capacitance-Electrostatic sensor (CES). The CES sensor is mainly composed of a capacitance electrode array and two electrostatic electrode arrays. The optimum design of the sensor is achieved by finite element method. The capacitance electrode array is employed to detect the solid distribution over the cross-section of the pipe, and the local solid volumetric concentration measurement is further derived. The electrostatic electrode arrays are used to measure the local solid velocities in conjunction with cross-correlation method. From the local solid velocity and local volumetric concentration, the solid mass flowrate and the local solid mass flowrate can be achieved. The developed system for the local solid volumetric concentration measurement is verified through analogue simulation experiments and static experiments. Finally, the system is employed to measure the local solid volumetric concentration, local solid velocity, local solid mass flowrate and solid mass flowrate on a belt conveyor. The experimental results show that the measurement error of the local solid volumetric concentration measurement results are less than 10.43% for solid local volumetric concentration ranging from 0.02 to 0.56, the standard deviations of the local solid velocity measurement results are less than 0.42 for solid velocity ranging from 3.5 m/s to 15.0 m/s, and the relative error of the solid mass flowrate is within −19.6% to +14.9% for solid mass flowrate ranging from 0.006 kg/s to 0.103 kg/s, indicating that the system is capable of achieving multi-parameters measurement in gas-solid two-phase flow system.  相似文献   

13.
In the paper, a simple and very accurate measurement technique is presented to determine the volumetric or mass flow rate. It is based on the fully-developed turbulent pipe flow, a new analytical universal velocity-profile over the entire pipe section and a single-point measurement. In combination with an optimized straightener this technique has to show minimal pressure loss, very moderate costs and high measuring accuracy compared to LDA-measurements. It is possible to apply the measuring prinicple to nonisothermal gas flows, too.  相似文献   

14.
杨斌  董永贵 《仪器仪表学报》2015,36(5):1072-1078
电极与皮肤间接触所导致的不适感,是穿戴式心电信号测量系统实际应用中的常见问题。设计了一种非接触心电信号测量系统。采用印刷电路板制作的测量电极,借助电容耦合测量位移电流的方式获取心电信号。采用反接二极管提供测量所需的高阻值偏置电阻,结合高输入阻抗仪表放大器,制作了测量电极信号提取电路。测量系统由两个测量电极与一个直接与测量电路地相连的参考电极组成。选择金属铝板、导电纤维和导电橡胶作为参考电极,实验研究了共模干扰抑制性能与参考电极接触阻抗之间的量化关系。将主元分析与奇异谱分析相结合,提出了一种心电信号处理算法。实验结果表明,该系统可在棉质线衣外侧有效获得满意的心电信号。  相似文献   

15.
A capacitance void fraction sensor (CVS) is applied to measure the volumetric averaged void fraction in a packed bed of spheres. The void fraction in the packed bed is one of the most important parameters to evaluate cooling characteristics in a porous debris bed during a severe accident of nuclear reactors, and the quantitative void fraction measuring technique for such porous flow channels should be developed. The CVS is a very simple method, and the void fraction is estimated from the electrical capacitance measured between the electrodes installed on the pipe. Generally, the linear relationship or Maxwell equation could be applied to estimate the void fraction from the capacitance measured by the CVS. However, the electrical field in the packed bed becomes complex due to the existence of spheres. Therefore, they may not be applied to the void fraction estimation in the packed bed. In this study, the CVS with a ring-type electrode configuration is used for the sphere-packed beds, and the applicability of the CVS is investigated. At first, the particle size and the pipe diameter are varied in the packed test section, and X-ray transmission imaging is used to clarify the relation between the void fraction and the capacitance in the packed bed. Then, it is found that the void fraction can be obtained by the coefficient in Maxwell's equation, depending on the packed bed properties. Finally, the measurement accuracy of the CVS for the sphere-packed bed is estimated by comparing it with a volumetric method, and the availability of the proposed method is shown.  相似文献   

16.
An inductive flow sensor with spot-shaped electrodes (IFS-SE) is sensitive to the shape of the flow profile and is restricted to be used to measure the flow rate of axisymmetric single-phase flows in a circular pipe. In many cases of application, it is not possible to provide a fully developed flow profile. Therefore, the inductive flow sensor has to cope with flow profiles that are not fully developed. To improve the accuracy, an inductive flow sensor with a pair of arc-shaped electrodes flush-mounted on the internal surface of an insulating section of a pipe is proposed in this article to investigate the characteristics of vertical gas-water two-phase flows. The effect of the flow profile on the inductive flow sensor is analyzed. A key contribution of the present work is to estimate the relationship between the induced voltage and the velocity of the conductive phase in two-phase flows. The estimation is achieved by the analytical calculation of magnetic-inductive equations through the method of variables separation. The analytical solution is compared with the results from an ideal model and from numerical simulation. Experiments are conducted to calibrate the inductive flow sensor with arc-shaped electrodes (IFS-AE). It is noted that the proposed IFS-AE can be adopted to obtain the velocity of the conductive phase in two-phase flows by measuring the voltage induced on the arc-shaped electrodes.  相似文献   

17.
The hydraulic transport of sediments in sediment–water multiphase mixtures is an important process in nature and many industrial applications. The flows are characterized by complex transient phenomena, in which the overall system scale and the particle scale are equally important. Experimental research into dense mixture flows is focused on measurement of flowrates, differential pressures and concentrations of the suspended sediments.Concentration measurements are especially challenging in the case of coarse particles (beyond millimeter size scale) flowing in dense mixtures, limiting the range of available sensors for accurately measuring the in-situ solids concentrations. For the investigation of transient processes, a quick sensor response is required, which makes concentration measurement based on mixture conductivity an interesting option.This study is focused on combined concentration and pressure measurements in dense sediment–water mixtures with coarse particles in a vertically oriented closed conduit, using differential pressure sensors over the vertical segments and conductivity probes for measuring the mixture concentration. We experimentally investigated the dispersion process of an initially densely packed batch of sand and gravel by measuring the concentration on different segments of the conduit, resulting in data on mixture wall shear stresses for different sand and gravel mixtures and data of attenuation of concentration gradients in vertical upward and downward flow, in the conduit horizontal top section and in the centrifugal pump.We describe in the detail the sensor calibration and data processing method, giving a best practice for the use of conductivity concentration sensors in dense coarse particle mixtures, and we suggest a novel method for analysis of density wave amplification and attenuation based on concentration measurements in general, which allows for the detailed analysis of transient multiphase flow phenomena at pipe system component level.  相似文献   

18.
On-line mass flow measurement of particulate solids in pneumatic conveying pipeline is a technically challenging area, where mass flow measurement presents a range of problems. These problems are not normally relevant to a single phase flow, but are always involved in gas–solids two-phase flows, like inhomogeneous distribution of solids over the pipe cross section, irregular velocity profiles, variations in particle size, moisture content, and deposition of fine particles on the inner wall of the pipeline. These variables may affect the response of a solids flow meter in ill-defined ways. All of these make the design and the calibration of solids’ mass flowmeter more difficult. Based on a review of non-invasive mass flow measurements of particulate solids, this paper summarizes and highlights several key issues, which often rely on structures of sensors or measurement methods, in indirect mass flow metering of pneumatically conveyed solids. They are: (i) spatial filtering effect; (ii) averaging effect; (iii) measurement resolution and sensitivity of array structures in tomography sensors.  相似文献   

19.
The measurement of microfluidic flows is an essential instrument to understand the governing physical mechanisms at small scales. This fact has motivated the adaptation of well-established “macroscale” experimental technics to deal with the specificities of microfluidic flows; a prominent example is the micro particle image velocimetry (micro-PIV) technique. In a different manner, the progress experienced by experimental techniques to measure flows in rotating frames has been more limited, with most studies concerned with macroscale turbomachinery applications. It turns out that the scale reduction in this field establishes a new and important flow class, known as centrigually-driven microfluidics, with application to lab-on-a-CD devices. However, the experimental characterization of rotating microflows has been, so far, limited to bulk flow measurements and/or visualization practices. For that reason, in this work, we propose extending the stationary micro-PIV technique to undertake quantitative, whole-field, velocity measurements inside rotating microchannel flow platforms. For this task, actual lab-on-a-CD prototypes are used. This work develops in two parts. First, we describe the most relevant changes in the micro-PIV equipment viewing the introduction of the test section rotation, namely: (i) hardware changes related to the micro-PIV/CD synchronization and (ii) software changes aiming at the preservation of the velocity measurement accuracy, through the removal of the circumferential velocity component. While this last step follows a well-known methodology, called image de-rotation, we propose tackling it in a new and automated fashion by means of the image registration method, whose implementation and advantages are explained in detail here. The second part of this work evaluates the capabilities of the modified micro-PIV technique by critically assessing the results of preliminary tests undertaken in dynamical regimes where rotation is dominant. Here, we present for the first time velocity profile measurements of centrifugally-driven microchannel flows, which display marked structural differences from classical stationary pressure-driven flows. The quality of these experimental profiles is further examined through comparisons with computational fluid dynamics simulations, based on the lattice Boltzmann method. Overall, this study indicates the effectiveness of the proposed micro-PIV system, which is able to accurately capture the most relevant physical features of rotating microfluidic flows over regions sufficiently far away from the walls. On the other hand, inside the boundary layers, the present micro-PIV measurements remain difficult to execute; the reasons for this limitation are discussed and clearly identified in the present preliminary studies, which pave the way for future studies in the field.  相似文献   

20.
基于ANSYS的多极板电容传感器仿真研究   总被引:2,自引:1,他引:2  
建立了多极板电容传感器的三维有限元仿真数学模型,运用ANSYS软件对不同结构的传感器进行了三维仿真计算,比较分析了无屏蔽电极、UMIST型和METC型三种结构的电容传感器中检测极板间的电位分布,研究了屏蔽电极长度METC型电容传感器检测极板间电位分布的影响。计算了极板内置式和外置式电容传感器的满管、空管电容及其变化量。仿真研究结果为多极板电容传感器的结构设计提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号