首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Persistently ischemic myocardium exhibits increased glucose uptake which may contribute to the preservation of myocardial function and viability. Little is known about the specific molecular events which are responsible for this increase in uptake. Therefore, we investigated whether myocardial ischemia induces the gene expression of the major cardiac facilitative glucose transporters, GLUT4 and GLUT1. We determined the expression of myocardial glucose transporter mRNAs and polypeptides after 6 h of regional ischemia in a dog model by semi-quantitative Northern blotting and immunoblotting. GLUT1 but not GLUT4 expression was significantly increased in both ischemic and non-ischemic regions from the experimental hearts when compared to surgical control and normal hearts. GLUT1 mRNA expression was increased 3.4-fold and GLUT1 polypeptide expression was increased 1.7-fold in ischemic hearts when compared to normal or surgical-control hearts. There were no significant regional differences in GLUT1 expression in either normal or ischemic hearts. However, there was a tendency for GLUT1 mRNA expression to be highest in the non-ischemic regions from the 6-h ischemia hearts. These findings suggest that myocardial ischemia induces a factor or factors which stimulate GLUT1 expression in non-ischemic as well as ischemic myocardial regions. Increased GLUT1 expression may play a role in augmenting glucose uptake during ischemia.  相似文献   

2.
The hyperthermophilic archaeum Thermoproteus tenax possesses two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity and phosphate dependence of the catalyzed reaction. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase catalyzes the phosphate-independent irreversible oxidation of D-glyceraldehyde 3-phosphate to 3-phosphoglycerate. The coding gene was cloned, sequenced, and expressed in Escherichia coli. Sequence comparisons showed no similarity to phosphorylating glyceraldehyde-3-phosphate dehydrogenases but revealed a relationship to aldehyde dehydrogenases, with the highest similarity to the subgroup of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenases. The activity of the enzyme is affected by a series of metabolites. All effectors tested influence the affinity of the enzyme for its cosubstrate NAD+. Whereas NADP(H), NADH, and ATP reduce the affinity for the cosubstrate, AMP, ADP, glucose 1-phosphate, and fructose 6-phosphate increase the affinity for NAD+. Additionally, most of the effectors investigated induce cooperativity of NAD+ binding. The irreversible catabolic oxidation of glyceraldehyde 3-phosphate, the control of the enzyme by energy charge of the cell, and the regulation by intermediates of glycolysis and glucan degradation identify the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase as an integral constituent of glycolysis in T. tenax. Its regulatory properties substitute for those lacking in the reversible nonregulated pyrophosphate-dependent phosphofructokinase in this variant of the Embden-Meyerhof-Parnas pathway.  相似文献   

3.
In order to examine glucose metabolism in liver grafts during cold preservation (24 and 48 hr), warm ischemia (60 and 120 min), a combination of the two and reperfusion, the amount of protein and mRNA of glucose transporter 2 and the activities of enzymes in glycolysis (glucokinase, phosphofructokinase, pyruvatekinase), gluconeogenesis (glucose 6-phosphatase, fructose 1,6-bisphosphatase), and the pentose phosphate pathway (glucose 6-phosphate dehydrogenase) were measured. It appeared that glucose transport, the pentose phosphate pathway, and gluconeogenesis were maintained during cold preservation and warm ischemia. The activity of glucokinase significantly decreased from the control value of 1.33 +/- 0.23 IU/g protein to 0.70 +/- 0.17 (24 hr, P<0.05) and 0.57 +/- 0.12 (48 hr, P<0.01) only during cold preservation. However, the activity of phosphofructokinase significantly decreased from the control value of 4.37 +/- 0.06 IU/g protein to 2.67 +/- 0.15 (60 min, P<0.0001) and 1.53 +/- 0.06 (120 min, P<0.0001) only during warm ischemia. This indicates that glycolysis deteriorates during both cold preservation and warm ischemia and demonstrates further that the balance between glycolysis and gluconeogenesis shifts to gluconeogenesis. Even when cold preservation was combined with warm ischemia, the activity of glucokinase decreased only during cold preservation and the activity of phosphofructokinase decreased only during warm ischemia. Furthermore, these changes were time-dependent. It is suggested that they can be used as a clock to measure the durations of cold preservation and warm ischemia separately and that the magnitude of an ischemic injury to a liver and a liver graft's viability can be indirectly estimated before transplantation.  相似文献   

4.
Although hypertrophied hearts have increased rates of glycolysis under aerobic conditions, it is controversial as to whether glucose metabolism during ischemia is altered in the hypertrophied heart. Because endogenous glycogen stores are a key source of glucose during ischemia, we developed a protocol to label the glycogen pool in hearts with either [3H]glucose or [14C]glucose, allowing for direct measurement of both glycogen and exogenous glucose metabolism during ischemia. Cardiac hypertrophy was produced in rats by banding the abdominal aorta for an 8-week period. Isolated hearts from aortic-banded and sham-operated rats were initially perfused under substrate-free conditions to decrease glycogen content to 40% of the initial pool size. Resynthesis and radiolabeling of the glycogen pool with [3H]glucose or [14C]glucose were accomplished in working hearts by perfusion for a 60-minute period with 11 mmol/L [3H]glucose or [14C]glucose, 0.5 mmol/L lactate, 1.2 mmol/L palmitate, and 100 mumol/mL insulin. Although glycolytic rates during the aerobic perfusion were significantly greater in hypertrophied hearts compared with control hearts, glycolytic rates from exogenous glucose were not different during low-flow ischemia. The contribution of glucose from glycogen was also not different in hypertrophied hearts compared with control hearts during ischemia (1314 +/- 665 versus 776 +/- 310 nmol.min-1.g dry wt-1, respectively). Glucose oxidation rates decreased during ischemia but were not different between the two groups. However, in both hypertrophied and control hearts, the ratio of glucose oxidation to glycolysis was greater for glucose originating from glycogen than from exogenous glucose. Our data demonstrate that glycogen is a significant source of glucose during low-flow ischemia, but the data do not differ between hypertrophied and control hearts.  相似文献   

5.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

6.
Within a few seconds after a sudden reduction of coronary blood flow regional contractile dysfunction ensues. The mechanisms responsible for the rapid reduction in contractile function during acute myocardial ischemia remain unclear, but may involve a rise in inorganic phosphate. When severe ischemia, such as resulting from a sudden and complete coronary artery occlusion, is prolonged for more than 20-40 min, myocardial infarction develops, and there is irreversible loss of contractile function. When myocardial ischemia is less severe but nevertheless prolonged, the myocardium is dysfunctional but can remain viable. In such ischemic and dysfunctional myocardium, contractile function is reduced in proportion to the reduction in regional myocardial blood flow; i.e. a state of "perfusion-contraction matching" exists. The metabolic status of such myocardium improves over the first few hours, as myocardial lactate production is attenuated and creatine phosphate, after an initial reduction, returns towards control values. Ischemic myocardium, characterized by perfusion-contraction matching, metabolic recovery and lack of necrosis, has been termed "short-term hibernating myocardium". Short-term hibernating myocardium can respond to an inotropic stimulation with increased contractile function, however, at the expense of a renewed worsening of the metabolic status. This situation of an increased regional contractile function at the expense of metabolic recovery during inotropic stimulation can be used to identify short-term hibernating myocardium. When inotropic stimulation is prolonged, the development of short-term hibernation is impaired and myocardial infarction develops. The mechanisms responsible for the development of short-term myocardial hibernation remain unclear at present; a significant involvement of adenosine and of activation of ATP-dependent potassium channels has been excluded. Whereas short-term hibernation is well characterized in animal experiments, the existence of hibernation over weeks or months (long-term hibernation) can only be inferred from clinical studies. Hibernation, as defined by Rahimtoola, is a state of chronic contractile dysfunction which is fully reversible upon reperfusion. Clinical syndromes consistent with the existence of myocardial hibernation include unstable and stable angina, acute myocardial infarction and left ventricular dysfunction and/or congestive heart failure. In long-term hibernating myocardium morphological alterations occur; the myofibrils are reduced in number and disorganized and myocardial glycogen content as well as the extracellular collagen network are increased. Thus, despite the fact that the myocardium remains viable during persistent ischemia and contractile dysfunction is reversible upon reperfusion, there are severe morphological alterations. Understandably, full functional recovery following reperfusion might therefore require weeks or even months.  相似文献   

7.
Fifteen red cell enzyme activities of growth-retarded patients with and without growth hormone (GH) deficiency were investigated before and after GH administration. The 15 enzymes were Hexokinase, phosphoglucomutase, glucose phosphate, isomerase, phosphofructokinase, fructose diphosphate aldolase, glyceraldehyde-3-phosphae dehydrogenase, triosephosphate isomerase, 2,3-diphosphoglycerate mutase, 3-phosphoglycerate kinase, 3-phosphoglycerate mutase, enolase, pyruvate kinase, glycose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase, glutathione reducase. Sixty-six subjects were studied: 30 normal control subjects (group N) and 36 patients (aged 5-23 years) with short stature. Complete endocrine evaluation showed 21 (group I) to have GH deficiency (10 patients with isolated GH deficiency) and 15 (group II) to have normal hypothalamic and pituitary function except for two patients with a moderate hypothyroidism. Both had been receiving thyroid hormone treatment for a long time before our studies. All 36 patients were treated with 2 mg human growth hormone intramuscularly for 7 days. Before GH treatment no significant difference was observed between hematologic data in group I (GH deficiency) and group II (no GH deficiency). After GH therapy there was a significant increase in reticulocyte count in both groups of patients with short stature. The mean pretreatment value in group I was 1.294% +/- 0.084 (SEM); the mean post-treatment value was 2.081% +/- 0.287 (SEM)< P less than 0.005. The mean pretreatment value in group II was 1.0% 0.184 (SEM); the mean post-treatment value was 1.407% +/- 0.193 (SEM), P less than 0.01. In group II (no GH deficiency) mean pretreatment erythrocyte enzyme activities were not significantly different from those activities observed in normal control subjects (group N). However, in patients who lacked GH, the pretreatment activities of five red cell enzymes (glucose phosphate isomerase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, 2,3-diphosphoglycerate mutase, 3-phosphoglycerate kinase) were significantly decreased before GH administration compared with the values in normal control subjects...  相似文献   

8.
(1) The effects of long term treatment with 3-acetylpyridine on the stability of enzymes towards heat and trypsin treatment were studied. (2) In the liver NAD or NADP provided a similar degree of protection against heat inactivation at 55 degrees C for 6-phosphogluconate dehydrogenase (24%), glyceraldehyde-3-phosphate dehydrogenase (24%) and malic enzyme (20%), low level of protection of lactate dehydrogenase (13%) but didn't affect acetylcholinesterase at all. In the muscle, however, there was substantial protection against heat inactivation by coenzyme of glyceraldehyde-3-phosphate dehydrogenase (52%), an intermediate level of protection of lactate dehydrogenase (25%), low level of protection of 6-phosphogluconate dehydrogenase (17%) and malic enzyme (17%) and almost no protection of acetylcholinesterase. (3) In the susceptibility towards trypsin a low but similar degree of protection for dehydrogenases by coenzymes was observed in the liver whereas in the muscle there was substantial protection against trypsin inactivation by NAD of glyceraldehyde-3-phosphate dehydrogenase, an intermediate level of protection of 6-phosphogluconate dehydrogenase and malic enzyme and very little protection of lactate dehydrogenase but no protection of acetylcholinesterase. Among enzymes tested, glyceraldehyde-3-phosphate dehydrogenase showed the greatest protection against heat and trypsin inactivation by NAD. (4) The results suggest that the effect of 3-acetylpyridine treatment on the stability of muscle glyceraldehyde-3-phosphate dehydrogenase appears to be quite specific and selective.  相似文献   

9.
BACKGROUND: Technetium 99m-labeled bis(N-ethoxy, N-ethyl dithiocarbamato) nitrido technetium(v) (99mTcN-NOET) is a new neutral cardiac perfusion imaging agent that has been shown to have very high uptake and retention in vitro. The purpose of this study was to determine the clearance kinetics of 99mTcN-NOET in control, ischemic-reperfused, and membrane-disrupted myocardium. METHODS AND RESULTS: After a 100 microCi (3.7 x 10(6) Bq) bolus of 99mTcN-NOET was injected, myocardial clearance was monitored for 1 hour by the use of a sodium iodide detector in 30 isolated, Krebs-Henseleit (KH) perfused rat hearts. Seven hearts were used as controls (group 1). In seven ischemic-reperfused hearts, tracer administration and uptake was followed by 30 minutes of no flow and 1 hour of reflow (group 2). In six additional ischemic-reperfused hearts, tracer administration was followed by deprivation of flow for 1 hour followed by 1 hour of reflow (group 3). Six hearts were perfused with a 0.5% Triton X-100 KH perfusate for 1 hour (group 4). Four hearts were perfused with KH for 10 minutes, followed by cyanide for 10 minutes (group 5). This cycle was repeated three times. Activities remaining in each heart at the end of each experiment were quantitated, and activity at peak uptake was calculated. The 99mTcN-NOET myocardial clearance was near linear in the control (0.6 +/- 0.4) and both ischemic-reperfused groups with virtually no fractional clearance (1.2% +/- 0.6% and 2.1% +/- 0.6%, respectively; p = NS). In the Triton X-100 membrane-disrupted hearts, clearance was substantial (94.2% +/- 4.0%; p < 0.0001 compared with the control and ischemic-reperfused groups). Cyanide treatment produced rapid clearance, which was arrested by a return to the standard KH perfusate. Peak uptake as a percentage of injected dose was 74.9% +/- 1.4% for all groups combined. CONCLUSION: Thus 99mTcN-NOET has extremely high myocardial retention after 1 hour in normal myocardium and is not significantly affected by ongoing myocardial ischemia or reperfusion injury in this model. Clearance is increased markedly in extreme conditions of membrane disruption. These data are consistent with the concept that 99mTc-NOET is localized predominantly in or on cell membranes. 99mTcN-NOET is a promising, new myocardial perfusion imaging agent that exhibits a stable myocardial distribution in the setting of acute developing injury.  相似文献   

10.
Postischemic myocardium possesses considerable contractile and metabolic reserves, but their mobilization could result in increased cell death. We tested the hypothesis that beta-adrenergic stimulation of reperfused myocardium would increase segment work more than O2 consumption, thereby improving efficiency without increased cell death. In 16 open-chest anesthetized dogs, the left anterior descending coronary artery (LAD) was ligated for 2 h; during the reperfusion period, isoproterenol (ISO; 0.1 microg/kg/min, i.v.) was administered to nine of the animals. Regional myocardial segment length and force were measured in the anterior (LAD) and posterior circumflex coronary artery (CFX) regions of the left ventricular myocardium. Work was calculated as the integrated products of force and shortening for each region. Regional myocardial O2 consumption was obtained from LAD flow and arterial and local venous O2 saturations. Infarct size (tetrazolium) was measured in the treated and untreated hearts at the end of the experiment. In untreated hearts, the first derivative of left ventricular pressure, cardiac output, and external work were significantly depressed during reperfusion; ISO restored all values to preocclusion levels. Regional myocardial work in both LAD and CFX regions was significantly increased by ISO (from 564 +/- 207 to 1,635 +/- 543 g/mm/min in LAD, and from 753 +/- 90 to 1,426 +/- 245 g/mm/min in CFX). Efficiency (work/oxygen consumption) of the reperfused region was similarly increased. LAD flow was significantly increased by ISO, and O2 extraction was unchanged. Infarct size was 28.2 +/- 4.7% in untreated hearts and 29.0 +/- 3.5% in ISO hearts. Thus isoproterenol stimulation significantly improved both regional and global function without subsequent evidence of increased cell death.  相似文献   

11.
EPR spectroscopy was used to measure paramagnetic species in rat hearts freeze-clamped during control perfusion by the Neely procedure, after 25 min of normothermic global ischemia or 20 min of total reperfusion with oxygenated perfusate. The analysis of spectral and relaxation parameters measured at -40 degrees C showed that in all three cases free radicals in heart tissue were semiquinones of CoQ10 and flavins. Ischemia increased the amount of free radical species (mostly flavosemiquinones) in myocardium about two times, the beginning of reflow of perfusate resulted in decrease of the intensity of the EPR signal to an initial level. The saturation curves were different for control, ischemic and reoxygenated postischemic samples, and they demonstrated the heterogeneity of free radical centers in cardiac mitochondria.  相似文献   

12.
A high glycogen level may be beneficial to the ischemic heart by providing glycolytic ATP or detrimental by increasing intracellular lactate and protons. To determine the effect of high glycogen on the ischemic myocardium, the glycogen content of Langendorff-perfused rat hearts was either depleted or elevated before 32 minutes of low-flow (0.5 mL/min) ischemia with Krebs-Henseleit buffer with or without 11 mmol/L glucose, followed by 32 minutes of reperfusion with buffer containing 11 mmol/L glucose. 31P nuclear magnetic resonance spectra were acquired sequentially throughout. Further experiments involved early reperfusion or the addition of HOE 694, a Na+-H+ exchange inhibitor, during reperfusion. When glucose was supplied throughout ischemia, no ischemic contracture occurred, and postischemic recovery of contractile function was highest, at 88% of preischemic function. In the absence of glucose, normal-glycogen hearts underwent ischemic contracture at 5 minutes, had an end-ischemic pH of 6.87, and recovered to 54%, whereas in high-glycogen hearts, contracture was delayed to 13 minutes, the end-ischemic pH was 6.61, and functional recovery decreased to 13%. Contracture onset coincided with the decrease in glycolysis, which occurred as glycogen became fully depleted. Functional recovery in the high-glycogen hearts increased to 89% when reperfused before contracture and to 56% when reperfused in the presence of HOE 694. Thus, during brief ischemia in the high-glycogen hearts, ischemic glycogen depletion and contracture were avoided, and the hearts were protected from injury. In contrast, during prolonged ischemia in the high-glycogen hearts, glycogen became fully depleted, and myocardial injury occurred; the injury was exacerbated by the lower ischemia pH in these hearts, leading to increased Na+-H+ exchange during reperfusion. The contradictory findings of past studies concerning the effect of high glycogen on the ischemic myocardium may thus be due to differences in the extent of glycogen depletion during ischemia.  相似文献   

13.
AIM: To study the protective and antiperoxidative effects of hyperin (hyperoside; quercetin-3-O-galactoside; Hyp) on myocardial ischemia/reperfusion. METHODS: The rabbit anterior descenging branch of left coronary artery was occluded for 60 min and then released to allow reperfusion for 20 min. Hemodynamics (LVP, LV +/- dp/dt) and electrocardiogram (ECG, lead II) were monitored continuously with polygraph. After reperfusion, the blood sample and myocardium were taken to assay plasma creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and cations in myocardium. Using a Langendorff system, the isolated heart of rat was initiated by ischemia for 40 min followed by 30 min of reperfusion. Malondialdehyde (MDA) contents of cardiac effluent and myocardium were measured with fluorescence spectrophotometer. RESULTS: Hyp 10 mg.kg-1 i.v. depressed changes in LVP, LV +/- dp/dtmax, ECG, plasma CPK, LDH, and cations (Ca2+, Mg2+, Na+) in myocardium induced by ischemia/reperfusion in rabbits. Hyp 10 and 100 mumol.L-1 markedly reduced the increase in MDA production in isolated rat hearts after ischemia/reperfusion. CONCLUSION: Hyp possesses a protective effect against myocardial ischemia/reperfusion injury via attenuating lipid peroxidation.  相似文献   

14.
Controversy exists as to whether the diabetic heart is more or less sensitive to ischemic injury. Although a considerable number of experimental studies have directly determined the effects of ischemia on the diabetic heart, there is still no general agreement as to whether metabolic changes within the myocardium contribute to the severity of ischemic injury. This paper reviews the evidence suggesting that the diabetic heart can actually be less sensitive to an episode of severe ischemia. Possible reasons for this decreased sensitivity to injury are discussed, which include a decreased accumulation of glycolytic products during ischemia (lactate and protons), as well as alterations in the regulation of intracellular pH in the diabetic heart. Based on existing studies, we suggest that although impaired glucose metabolism in the diabetic heart contributes to injury in hypoxic hearts or in hearts subjected to low-flow ischemia, diabetes-induced decreases in glycolysis can actually be beneficial to the diabetic heart during and following a severe ischemic episode. A decreased clearance of protons via the Na+/H+ exchanger may also contribute to the decreased sensitivity to ischemic injury in the diabetic heart.  相似文献   

15.
BACKGROUND: Patients with heart failure show a very high incidence of arrhythmias and sudden death that is often preceded by ischemia; however, data on electrophysiological changes during ischemia in failing myocardium are sparse. We studied electrical uncoupling during ischemia in normal and failing myocardium. METHODS AND RESULTS: Tissue resistance, intracellular Ca2+ concentration (Indo-1 fluorescence ratio), and mechanical activity were simultaneously determined in arterially perfused right ventricular papillary muscles from 11 normal and 15 failing rabbits. Heart failure was induced by combined volume and pressure overload. Before sustained ischemia, muscles were subjected to control perfusion (non-PC) or ischemic preconditioning (PC). The onset of uncoupling during ischemia was equal in non-PC normal (13.6+/-0.9 minutes of ischemia) and non-PC failing hearts (13.3+/-0.7 minutes of ischemia). PC postponed uncoupling in normal hearts by 10 minutes. In failing hearts, however, PC caused a large variability in the onset of uncoupling during ischemia (mean, 12.2+/-2.1; range, 5 to 22 minutes of ischemia). The duration of uncoupling process was prolonged in failing hearts (12.9+/-0.9 minutes) compared with normal hearts (7.8+/-0.4 minutes). The degree of heart failure and relative heart weight of the failing hearts significantly correlated with the earlier uncoupling after PC and the duration of uncoupling. In every experiment, the start of Ca2+ rise and contracture preceded uncoupling during ischemia. CONCLUSIONS: The duration of the process of ischemia-induced electrical uncoupling in failing hearts is prolonged compared with that in normal hearts. Ischemic PC has detrimental effects in severely failing papillary muscles because it advances the moment of irreversible ischemic damage.  相似文献   

16.
BACKGROUND: Hibernating myocardium in patients with collateral-dependent myocardium is characterized by relative reductions in resting flow and increases in the uptake of 18F-2-deoxyglucose (FDG) in the fasting state. We performed the present study to examine whether these key physiological alterations could be produced in a porcine model of chronic coronary occlusion and to assess whether the adaptations consistent with hibernation varied across the myocardial wall. METHODS AND RESULTS: We chronically instrumented pigs (n = 18) with a fixed occluder on the proximal left anterior descending coronary artery (LAD). Three months later, ventricular function, regional myocardial perfusion, and FDG deposition (by excised tissue counting or positron emission tomography) were assessed in pigs after an over-night fast in the closed-chest anesthetized state. Total LAD occlusion with angiographic collaterals was present in the majority of animals. Left ventriculography showed severe anterior hypokinesis, and resting perfusion was significantly reduced in the hibernating LAD region in comparison with the normal remote regions (subendocardium: 0.80 +/- 0.06 versus 1.07 +/- 0.06 mL.min-1.g-1, P < .001; full-thickness: 0.87 +/- 0.04 versus 0.99 +/- 0.06 mL.min-1.g-1, P < .01). There was a twofold increase in full-thickness fasting FDG uptake in the dysfunctional LAD region (1.8 +/- 0.2 by positron emission tomography versus 1.9 +/- 0.1 by ex vivo counting). Ex vivo tissue counting revealed a pronounced transmural variation in FDG uptake in the hibernating region (LAD/normal), which averaged 2.5 +/- 0.2 in the subendocardium, 1.9 +/- 0.2 in the midmyocardium, and 1.4 +/- 0.1 in the subepicardium. CONCLUSIONS: These results demonstrate that pigs instrumented with a proximal LAD stenosis develop hibernating myocardium characterized by relative reductions in resting function and perfusion in association with increased uptake of FDG in the fasting state. The transmural variations in relative resting flow and FDG uptake suggest that myocardial adaptations consistent with hibernation are most pronounced in the subendocardial layers and vary in relation to local coronary flow reserve.  相似文献   

17.
Ischemic preconditioning (PC) has been shown to attenuate intracellular acidification during a subsequent period of ischemia, to minimize stunning, and to decrease infarct size, PKC activation has been suggested to be involved in this phenomenon. The present study is designed to test whether PKC activation could mimic and PKC inhibition could block the PC effects on intracellular acidification during ischemia and on stunning during reflow in Langendorff perfused rat hearts. Prior to 20 min of sustained global normothermic ischemia, groups of hearts were treated with the PKC activators 4 beta-phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-srt-glycerol (DOG), a group of hearts was treated with the PKC inhibitor chelerythrine (CH), a group was treated with DOG plus CH, a group was preconditioned with four cycles of 5 min of ischemia and 5 min of reflow, and a group was treated with CH during PC. Recovery of left ventricular developed pressure (% of initial, pretreatment, preischemic LVDP), measured after 20 min of reflow, was improved in hearts treated with DOG, but not PMA (80 +/- 3% (DOG), 55 +/- 3% (PMA) v 51 +/- 3% (control), P < 0.05 between DOG and control), although both caused a similar degree of PKC translocation (measured by fractionation followed by an assay of PKC activity using incorporation of 32P into histone). The improved recovery of LVDP in the PC group and in the DOG group was blocked by chelerythrine. Measurement of pH (by 31P NMR) showed that DOG reduced acidification at 15-20 min of ischemia, although the effect was not as great as PC, while PMA did not reduce acidification. The effect of DOG on pHi was attenuated by CH; however, the PC-induced attenuation of the fall in pHi, was not affected by CH. High energy phosphates (measured by 31P NMR) were not significantly different between any of the groups during ischemia or reflow. This study confirms that the protective effect of ischemic preconditioning on stunning in rat heart can be eliminated by inhibition of PKC, but suggests that the effect of PC on the fall in pHi during sustained ischemia is not mediated by PKC.  相似文献   

18.
Generation of free radicals upon reperfusion has been cited as one of the major causes of ischaemia/reperfusion injury. The following series of experiments was designed to study the effect of manganese superoxide dismutase (MnSOD) overexpression in transgenic mice on ischemia/reperfusion injury. A species of 1.4 kb human MnSOD mRNA was expressed, and a 325% increase in MnSOD activity was detected in the hearts of transgenic mice with no changes in the other antioxidant enzymes or heat shock proteins. Immunocytochemical study indicated an increased labeling of MnSOD mainly in the heart mitochondria of the transgenic mice. When these hearts were perfused as Langendorff preparations for 45 min after 35 min of global ischemia, the functional recovery of the hearts, expressed as heart rate x left ventricular developed pressure, was 52 +/- 4% in the transgenic hearts as compared to 31 +/- 4% in the non-transgenic hearts. This protection was accompanied by a significant decrease in lactate dehydrogenase release from the transgenic hearts. Overexpression of MnSOD limited the infarct size in vivo in a left coronary artery ligation model. Our results demonstrate that overexpression of MnSOD renders the heart more resistant to ischemia/reperfusion injury.  相似文献   

19.
At 9 mM glucose, experimental results show that mitochondrial phosphate depletion (induced by glucose phosphorylation, catalyzed by mitochondrial hexokinase) reduces the activities of the respiratory chain, oxidative phosphorylation, and glutaminase. Consequently, the 14C-lactate oxidation to 14CO2 is lowered in the presence of glucose. The fall of ATP level triggers a high aerobic glycolysis by deinhibiting fructose-6-P kinase. NADH, generated by enhanced glyceraldehyde-3-P dehydrogenase activity, increases the reducing power. Moreover, the lactate dehydrogenase (LDH) system is shifted toward lactate formation, while NAD+ is regenerated and the oligomycin-inhibited ATP production is replaced by the iodoacetate-inhibited ATP production. From 14CO2 production and lactate accumulation it is calculated that about 60% of 14C-glucose which disappears is channelled into extraglycolytic reactions. On the contrary, 82% of glucose below l mM is metabolized through non-glycolytic reactions. The pyruvate kinase-M2 (PK-M2) inhibition does not limit the glycolytic flow from 9 mM glucose, but it may cause sustained gluconeogenesis.  相似文献   

20.
Medical records and archival myocardial specimens of 33 children and adolescents with end-stage idiopathic dilated cardiomyopathy (IDCM) were collected to evaluate retrospectively the potential role of enteroviral persistence in the pathogenesis of IDCM. The clinical history and laboratory assessment of each patient were reviewed carefully in order to obtain information on the nature and etiology of infections in the past and at the time of diagnosis of cardiomyopathy. Sixty-four formaldehyde-fixed, paraffin-embedded myocardial specimens, obtained from endomyocardial biopsies (n = 5), explanted hearts (n = 10), or autopsies (n = 49), were studied by the polymerase chain reaction (PCR) and by in situ hybridization to detect enteroviral RNA in the specimens. Control specimens included 34 formaldehyde-fixed, paraffin-embedded myocardial specimens from children with other cardiomyopathies, metabolic diseases, structural heart defects, or various noncardiac malignancies. The presence of cellular RNA in the specimens was confirmed by amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA or beta-actin mRNA as positive controls. Only one specimen from the 32 IDCM patients with appropriate myocardial specimens was positive for enteroviral RNA by PCR. Sequence analysis of the amplified viral segment showed a significant degree of homology between the viral sequence and echovirus 1. One specimen from the control patients also appeared positive by PCR, but sequence analysis of the amplified viral segment revealed it as rhinovirus 16. The results do not indicate any significant role for enteroviral persistence in end-stage childhood IDCM, although they need to be confirmed using a prospective study with fresh frozen specimens. However, mechanisms other than viral persistence may be more important in the progression of IDCM to end-stage heart failure in this age group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号